Jie Yin

Associate Professor

Dr. Yin received his Ph.D. in Engineering Mechanics from Columbia University and M.S. in Solid Mechanics from Tsinghua University. Prior to join NC State, he worked as a Postdoctoral Associate at MIT and an Assistant and Associate Professor at Temple University. He is the recipient of the Cozzarelli Prize from the National Academy of Sciences (NAS), NSF CAREER Award, and Extreme Mechanics Letters (EML) Young Investigator Award.

Yin group’s research is on both fundamental mechanics and functionality of novel materials and structures at all scales (https://scholar.google.com/citations?hl=en&user=OorAZMgAAAAJ).

Currently, it focuses on mechanics and design of mechanical metamaterials, mechanics guided design of soft robotics, and multifunctional interfacial materials. Presently, he studies reconfigurable kirigami-based architected materials for achieving unprecedented properties and functionalities. He also studies the mechanics guided design of high-performance soft robotics in both manipulation and locomotion for achieving high force, high speed, and high strength. Another topic is shape-morphing materials and structures for sustainable energy and environments. All of these topics are investigated through combining theoretical modeling, numerical simulation, and experimental techniques.

 

Publications

Adaptive hierarchical origami-based metastructures
Li, Y., Di Lallo, A., Zhu, J., Chi, Y., Su, H., & Yin, J. (2024), NATURE COMMUNICATIONS, 15(1). https://doi.org/10.1038/s41467-024-50497-5
Defected twisted ring topology for autonomous periodic flip-spin-orbit soft robot
Qi, F., Li, Y., Hong, Y., Zhao, Y., Qing, H., & Yin, J. (2024), PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 121(3). https://doi.org/10.1073/pnas.231268012
Fully 3D-Printed Miniature Soft Hydraulic Actuators with Shape Memory Effect for Morphing and Manipulation
Qing, H., Chi, Y., Hong, Y., Zhao, Y., Qi, F., Li, Y., & Yin, J. (2024, June 4), ADVANCED MATERIALS. https://doi.org/10.1002/adma.202402517
Geometric mechanics of kiri-origami-based bifurcated mechanical metamaterials
Li, Y., Zhou, C., & Yin, J. (2024), PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 382(2283). https://doi.org/10.1098/rsta.2024.0010
Reprogrammable and reconfigurable mechanical computing metastructures with stable and high-density memory
Li, Y., Yu, S., Qing, H., Hong, Y., Zhao, Y., Qi, F., … Yin, J. (2024), SCIENCE ADVANCES, 10(26). https://doi.org/10.1126/sciadv.ado6476
Squirting-cucumber-inspired miniature explosive hydrogel launcher
Qing, H., Qi, F., & Yin, J. (2024), NATURE MATERIALS, 23(10), 1315–1317. https://doi.org/10.1038/s41563-024-02005-9
Untethered Fluidic Engine for High-Force Soft Wearable Robots
Di Lallo, A., Yu, S., Slightam, J. E., Gu, G. X., Yin, J., & Su, H. (2024, June 13), ADVANCED INTELLIGENT SYSTEMS, Vol. 6. https://doi.org/10.1002/aisy.202400171
A Perspective on Miniature Soft Robotics: Actuation, Fabrication, Control, and Applications
Chi, Y., Zhao, Y., Hong, Y., Li, Y., & Yin, J. (2023, April 26), ADVANCED INTELLIGENT SYSTEMS. https://doi.org/10.1002/aisy.202300063
A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation
Chen, T.-H., Hong, Y., Fu, C.-T., Nandi, A., Xie, W., Yin, J., & Hsu, P.-C. (2023), PNAS NEXUS, 2(6). https://doi.org/10.1093/pnasnexus/pgad165
A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures
Wang, S., Dong, Y., Li, Y., Ryu, K., Dong, Z., Chen, J., … Long, Y. (2023, July 21), MATERIALS HORIZONS. https://doi.org/10.1039/d3mh00671a

View all publications via NC State Libraries

Jie Yin