NC STATE UNIVERSITY

Mechanical and Aerospace Engineering Presents HERO i Rerospace Engineering Capstone Senior Design 2023-2024

Team Members:

- Brian Shi (Financial, Aerodynamics)
- Caleb Kebede (Communications, Propulsion)
- Jose Vizcarrondo (Systems, Payload & Avionics))
- Lucas Andrews (Manufacturing, CAD & Simulation)
- Sebastian Perna (Test & Safety, Stability & Control)
- Tobias Hullette (Project Manager, Structures)

Mission

REACHR's HERO 1 UAV is designed to assist North Carolina first responders during floods and hurricanes by efficiently locating, communicating with, and delivering supplies to stranded individuals. Designed for versatile operations on water and land, HERO 1 reduces disaster response time and improves efforts with advanced technology and payload capabilities.

Hurricane Katrina taken by Mark Moran from NOAA

Concept of Operations

Stage 1: Observer handmins.

Stage 3: Gathers situational data using the avionics system and its known GPS location. Stage 4: Data wirelessly transmitted to the ground crew for processing with AI. Stage 5: Capable of VTOL landing on solid ground or water. The payload can be modified for specific mission criteria.

Functional Block Diagram

Functional block diagram: The flight computer serves as the central control unit for the aircraft, receiving inputs from various sensors such as GPS. altimeters, and pilot commands. It is connected to an avionics module. which facilitates data transmission to the ground station for monitoring and control by the crew. The avionics system includes cameras and sensors that are linked to the flight computer and an onboard transmitter for realtime data transmission. The power supply and propulsion systems are responsible for providing energy and thrust to the aircraft.

CONOPS: Remote operation by the pilot with observer support.

- launches HERO 1 into hazard
- area post-hurricane.
- Stage 2: Climbs to 400 feet and follows a planned path for 20

Design Solution

Design solution: A versatile UAV design featuring STOL, VTOL, and cruise flight capabilities. Constructed with carbon fiber, FORMULAR 150 foam, aluminum, and balsa wood for optimal strength-to-weight ratios. Capable of water landings for patrolling flooded areas. High endurance with high aspect ratio wing and dual batteries. Ideal for hurricane and flood response.

 Three motors for V/STOL Front two motors rotate forward to transition from V/STOL to cruise flight

Subsystem	Component	Specifications
CAD	Full Assembly	Empty mass: 20 lb (target), 21.5 lb (actual)
		Volume: 1711.96 in^3
		Center of Mass: 25.16 in behind nose, 5.06 in
		vertically up from nose
Aerodynamics	Wing	Airfoil: NACA 4412
		Span: 10 ft
		Root Chord: 12 in
		Tip Chord: 6 in
		Taper Ratio: 0.5
		Aspect Ratio: 13.3
		Sweep: - 1.5 deg
		Dihedral: 0 deg
		Twist: 0 deg
		Incidence: 0 deg
	Tail	Airfoil: NACA 0012
		V-Tail: 110 deg
		Root Chord: 10 in
		Tip Chord: 10 in
		Taper Ratio: 1
		Sweep: 0 deg
		Twist: 0 deg
		Incidence: 0 deg
Propulsion	Motors	Thrust-to-Weight Ratio: 1.2
		3 x Spektrum Avian 5055-500Kv
	Propelllers	13x8 3-Blade APC Propeller
Structures	Fuselage	Flying boat hull
		Aluminum frame, balsa ribs, foam body
	Wing	Foam core with carbon fiber skin and spars
	Tail	Foam core with carbon fiber skin and spars
	Rotor Spars	25x23mm carbon fiber spar
	Twin Booms	25x23mm carbon fiber spar
	Outrigger Floats	Attached just inboard of ailerons
		Foam core with carbon fiber skin and spars
Stability and Controls	Controls Software	ARDUPilot

Manufacturing

Fuselage Frame

Foam Core

Structures

- The Hull and wings involved splitting the CAD model, hot wiring foam pieces, composite layups and water jetting metal part.
- The Propulsion system was built by soldering connections, mounting motors, and propellers.

Final Prototype and UU&T

After initial setbacks from high wind and failed hand launches, HERO 1 proved its VTOL and

cruise flight capabilities by successfully transitioning mid-flight.

NASA's 2024 Gateways to Blue Skies Competition challenged teams to design a clean-energy natural disaster response system. REACHR was selected as one of eight finalists to present a system proposal at NASA Ames Research Center in May 2024. This system integrates

Innovative aviation and surveillance technologies and can be Implemented by 2035.

Carbon Fiber Lav

Avionics required modifying a power distribution board and a Matek flight controller.

REACHR

- Project Summary:
- · Disaster & Management Phase: Hurricane (and water-based emergency) response Use Case: Minimizing first responder time and risk by locating and communicating with stranded victims, planning response and rescue route, and delivering
- Systems Overview: V/STOL flying boat UAV platform equipped with AI route planning, LiDAR, FLIR, NASA's FINDER, 5G cellular relay antennae, solar enhanced batteries, and web application communications

Team Composition/Roles:

- North Carolina State University Aerospace Engineering (AE) Senior Design Team
- Team Composition:
- Team Lead: Tobias Hullette (Senior in AE)
- Brian Shi (Senior in AE)
- Caleb Kebede (Senior in AE)
- Sebastian Perna (Senior in AE)
- Jose Vizcarrondo (Senior in AE)
- Lucas Andrews (Senior in AE)

Qualifications for Success: As an accomplished erospace senior design team, REACHR demonstrate old innovation, collaborative excellence, and technical prowess, excited to present groundbreaking solutions for the 2024 NASA Gateways to Blue Skies competition

Propose	d deployment timeline:
2024-25	Preliminary Design, Critical Design Customer Approval, Customer Funding Field Tailoring
2026-28	Prototyping and Testing,System Integration Field Testing Barrier Analysis
2029-31	Final Design, Manufacturing Customer Training Risk Mitigation, Regulation Approval
2032-34	Distribution Customer Operational Integration Field Training

Regulation Approval