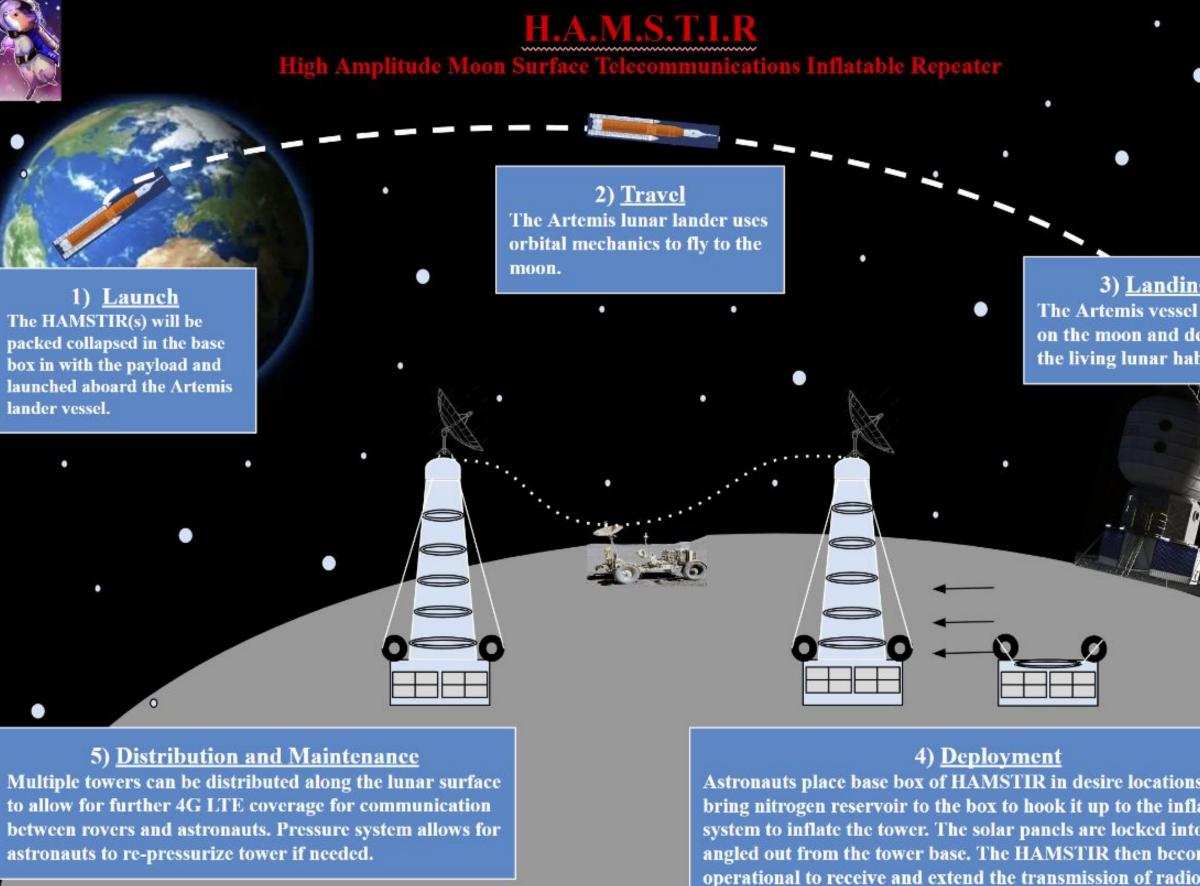
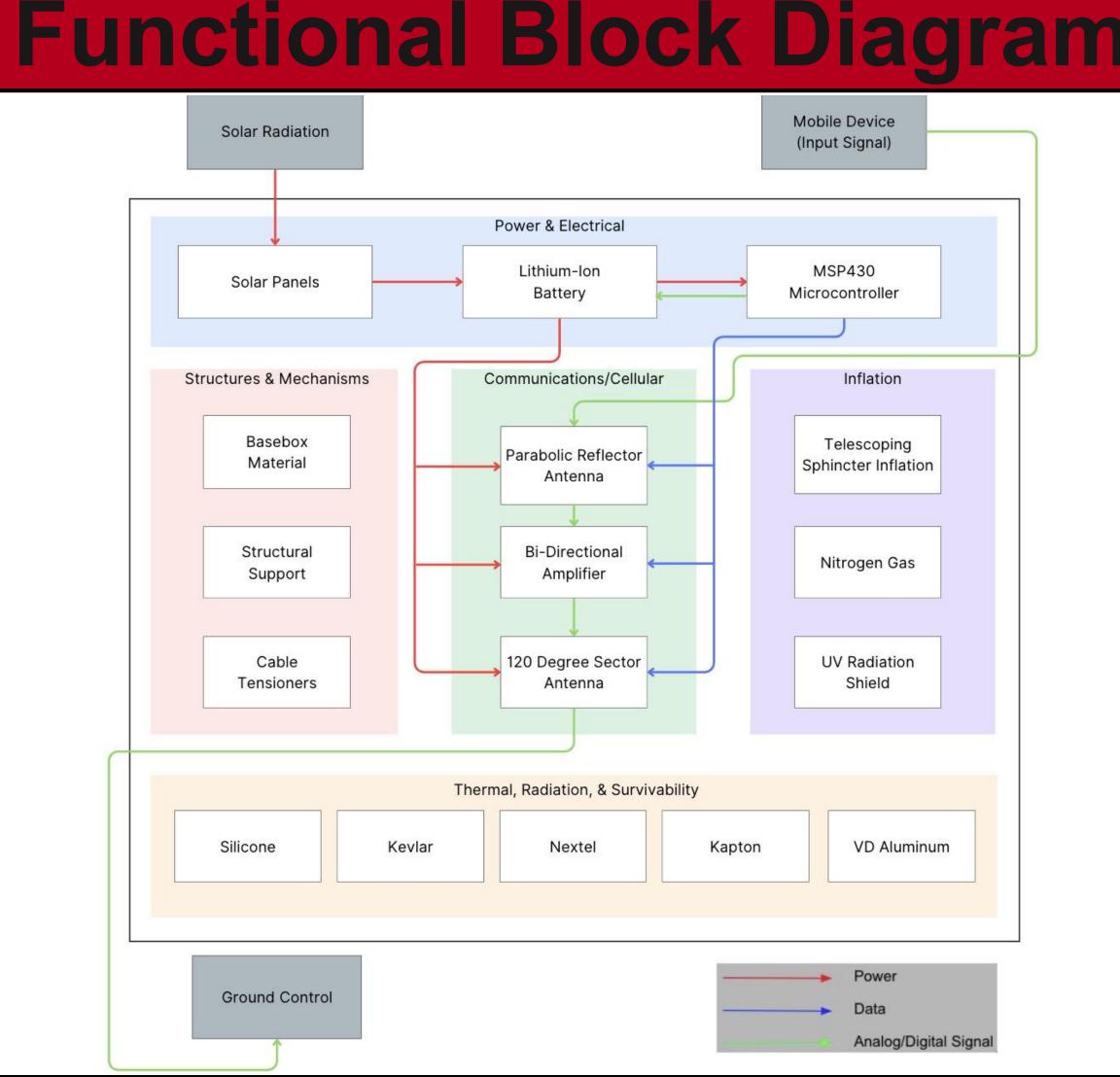


Mechanical and Aerospace Engineering

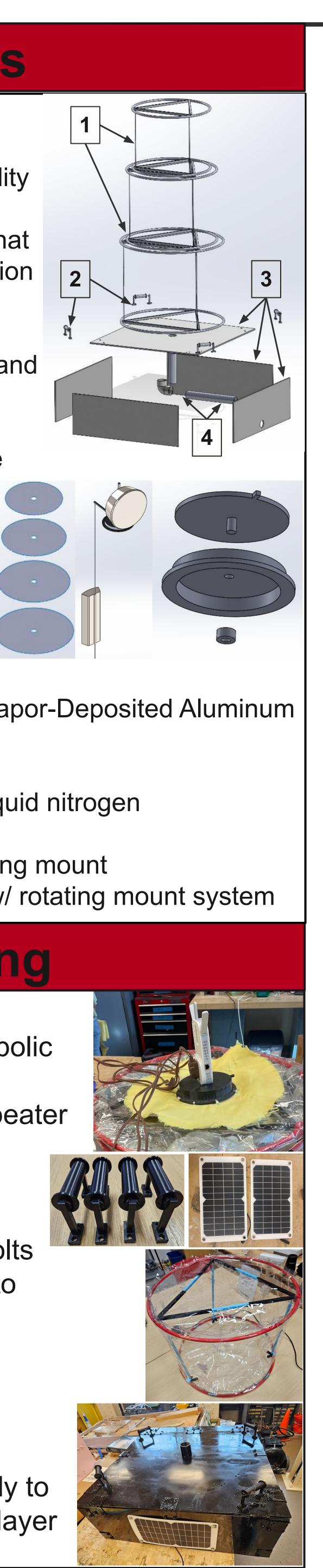

H.A.M.S.T.I.R. High Amplitude Moon Surface Telecommunication Inflatable Repeater


Kathryn Soderman, Brennan Donovan, James Fernandez, Nate VanDermark, Jason Solomon, Vennela Gottiparthy, Sam Masten

Project Overview

HAMSTIR is an inflatable, solar-powered 4G communications tower that deploys on the lunar surface from a compact basebox using sequential nitrogen inflation and internal rigid supports. It enable a widespread data network essential for communication between astronauts and rovers for future lunar exploration while minimizing payload mas and volume.

Concept of Operations



on the lunar surface

Sponsor: Dr. Ware | Instructor: Dr. Felix Ewere | Teaching Assistant: Matthew Ayoola | Team Name: Space Hamsters Aerospace Engineering Capstone Senior Design 2023 - 2024

	_	
		CAD Models
es		 Triangular-Ring Slot-Truss Structure: Slotted poles extend during inflation and lock into place, providing structural stability Tensioner Spools: Spools attached to basebox with wires that connect to top of tower and provide tension
ass		for structural stability 3. Base-Box Sides and Lid: Basebox houses electrical components a
		 air intake system and supports tower 4. PVC Inflation Pipe System: Facilitates airflow from the air tank to the inflatable bladder
e g lands ploys pitat(s).		 Also included: Inflatable Bladder and Sphincters: Allows for sectional inflation Materials: vinyl, silicone Kevlar Protective Layer: Intended to protect inflatable bladder Layers: Silicone, Kevlar, Nextel, Kapton, Va
and ation place mes		 Air Tank: Used to inflate the bladder system Prototype: 125 psi air tank ; Full-Scale: liqu Communications Equipment and Mount: Prototype: Wifi-extender and rotating bearin Full-Scale: Parabolic and sector antenna w/
signals		Manufacturir
		 Mount & Antenna: 3D printed rotating bearing mount & parabantenna Secured mount to kevlar w/ zip ties, repervented by plastic cement Basebox: Manufactured with plexiglass Solar panels mounted to exterior using bol Battery packs & power inverter mounted to interior Truss Structure: 3D Printed PLA and ABS Triangular-Ring Slot-Truss Structure
		 Bladder manufactured with vinyl; fit directly

tri-slot & surrounded by kevlar protective layer

Communications:

Power and Electrical:

inverter.

Structures and Mechanisms:

- .5 inch diameter ring and interior pole thickness
- 24 inch interior ring diameter with accordingly fitted equilateral tri-slot • Results in 20.76 inch pole lengths
- Pole ends are .2 inches thick to fit within rails • Top end is mushroom shaped to support sliding in the rail
 - Bottom end is a .18 inch diameter circle with a 1/16 inch hole to allow for a pin connection and enable rotation

Inflation System:

- CFD ANSYS tests for sectional inflation Sectional vortices encourage systemic inflation
- Decreasing pressure through mesh from top to bottom

Structures and Mechanisms:

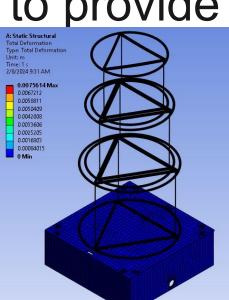
- FEAANSYS analysis
- 6.5 kg load under Earth conditions
- Max deformation of 7.5mm in top section ANSYS deformation is cumulative, successful simulation • Max stress of 2.6E6 Pa
- Simulation did not account for torsion in the poles, but this issue was Ο accounted for with the bladder constriction and "lego hand" prints **Communications and Power:**

- Simulated vertical antenna isolation distance (>6ft), coverage extension range (~1.4km for -110 dBm), and moment balance
- Batteries charged by solar panels and wired up to repeater to provide ~12V of continuous power for 4+ hours

Final Prototype

• TP-Link AC1900 Wifi-repeater (2/4/5.0GHz) wired to batteries Configured to NCSU guest network (70ft coverage extension)

• 7.5W solar panels generate additional power to recharge the 5.2Ah Li-ion battery packs, which are configured to a 12V to 110V DC to AC power



Sphincter

Symmetrical Axis

