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Abstract: An analytical model to characterize the pear-shaped tribotest is presented. In this
test, a tubular specimen is pressurized, forcing the material to flow towards the apex of a
pear-shaped die. The height of the pear-shaped tube is a function of the magnitude of friction
stress at the tube–die interface. Through a mechanistic approach, a closed-form solution for
field variables die–tube contact pressure, effective stress/strain, longitudinal stress/strain, and
hoop stress/strain can be computed as a function of input pressure loading. The model has
been validated by finite element analysis. The closed-form solution can be used rapidly to
establish the calibration curves for determination of friction coefficient in the pear-shaped tri-
botest. Of equal importance, the analytical model can be used to optimize both process and die
geometric variables to suit specific needs such as die wear studies through monitoring local
interface pressure loading, types of material to be tested, tube sizes, and so on. Details on the
applications of the developed analytical model can be found in Part 2 of this paper.
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1 INTRODUCTION

In recent years, the tube hydroforming (THF) process
has received increased attention in the automotive
and aerospace industries owing to its numerous
advantages over stamped and welded assemblies.
The advantages of THF include high strength-to-
weight ratio, dimensional accuracy, and part consoli-
dation [1–6]. In THF, a tubular blank is formed within
a die cavity by forcing pressurized fluid inside so that
the blank expands into the final shape. The coordina-
tion of inside pressure and feeding of the material by
pushing the tube ends is critical to the success of the
process. The drawback of this process is the longer
cycle time. To make it competitive with other manu-
facturing processes, much research has been put into
improving cycle time by developing new hydroform-
ing press designs [7].

Tribology is also critical to the advancement of
THF. Ineffective lubrication in THF can result in
poor surface quality of the part: excessive friction

forces may impede optimal material flow to the die
cavity, resulting in the formation of wrinkles or other
defects that make a part unacceptable.

Typically, THF can be divided into three friction
zones: guiding zone, transition zone, and expansion
zone [8, 9]. Figure 1 shows an example of THF parts
and friction zone categories. The guiding zone is
where the material is pushed towards the die cavity
to supply material. At the expansion zone, the mate-
rial is forced to conform to the die cavity by the inter-
nal fluid pressure.

Owing to variation in punch velocities and the
internal pressure loading, the material flow patterns
may be complex, leading to severe tribological condi-
tions at the tool-workpiece interface. Furthermore,
the state of stress at the respective friction zones
may differ considerably; the state of stress in the
guiding zone is predominantly compression – leading
to wall thickening – while in the expansion zone, the
stress is predominantly tensile – leading to surface
expansion and wall thinning. The differing tribological
conditions suggest different lubrication mechanisms
[8]. Previous studies have shown that lubricants that
perform well in the guiding zone do not perform
well in the expansion zone. This is attributed to dif-
ferences in tribological conditions in the respective
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zones. Lubricant developers are attempting to devise
effective lubrication in THF [10].

Tribotests that mimic tribological conditions in
THF are critical for evaluating candidate lubricants.
Two commonly used tribotests to evaluate lubricants
for the expansion zone are the corner fill test, which
was originally developed by the Industrial Research
and Development Institute (IRDI) in Canada [11],
and the pear-shaped expansion test, which was devel-
oped at the Ohio State University [8, 12]. Figures 2(a)
and (b) show the corner fill and pear-shaped
expansion tests, respectively. The premise behind
the corner fill test is that under good lubrication
conditions, the tube will be inflated to tight corner
radii before fracture and the wall thickness distribu-
tion will be uniform. In the case of higher friction at
the tube–die interface, fracture will occur prema-
turely or significant wall thinning will be observed
near the corner [11].

While in the corner fill test, material flows towards
all four corners, the pear-shaped expansion test
confines the material to flow in one direction only.
After expanding the tube to pressure Pi, d or protru-
sion height PH can be determined. PH is the distance
from the bottom of the tube to the apex. Delta at
fracture df is a function of friction stress ts, flow
stress, s, and internal pressure Pi. The die angle c
can be optimized via numerical modelling by maxi-
mizing the difference between dm2 and dm1. Perfor-
mance evaluation of the lubricants can be achieved
based on three criteria: wall thinning distribution –
the lower the wall thinning, the better the lubricant;
protrusion height PH – the higher the height of
protrusion, the better the lubricant; and bursting
pressure – the higher the bursting pressure, the better
the lubricant [12].

Although these tests can effectively be used in
ranking lubricant performance, the friction coefficient
for the lubricant tested cannot be determined directly.
Friction values are important for process modelling via
computer simulation. Obtaining friction coefficients

experimentally from these tests is complicated, if not
impossible, because of the geometric constraints that
prohibit placement of load cells. One way to obtain
apparent friction coefficients is to combine experi-
ments and numerical modelling via finite element ana-
lysis (FEA); however, this is time consuming. There is a
need for analytical solutions for friction characteriza-
tion in the expansion zone.

OBJECTIVES AND APPROACH

The goal of this paper is to develop a closed-form
solution that will provide ways to determine the state
of stress and strain along a deforming pear shape that
is subjected to internal pressure Pi. The specific
objectives are as follows:

(a) develop a mathematical model that will provide
the interface pressure distribution around the
deforming tube as a function of the internal
pressure;

(b) establish mathematical relationships that encom-
pass principal stresses, strains, material para-
meters, and geometric variables (tube and die)
that will facilitate optimization of the pear-shaped
tribotest, i.e. obtaining pear-shaped geometry that
is friction sensitive for use in materials with differ-
ent formability levels;

(c) derive mathematical relationships that can be
used to establish friction calibration curves.

The authors expect that the analytical models will
benefit both tribologists and THF process designers,
as models will quickly provide better understanding
of the local loads transmitted to the die systems,
particularly for parts similar to pear shape. Also, cap-
turing pressure distribution will provide information
on die areas with peak pressures that may need spe-
cial attention to suppress die wear.

The derivation commences by subdividing the
pear shape into three sections: circular section, linear

Fig. 1 Sample THF part and friction zone
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section, and free section, as shown in Fig. 3. Balance
of forces is taken at each section to establish the rela-
tionships between radial stresses sr, hoop stresses su,
and longitudinal stresses sz. The flow stress used is
assumed to obey von Mises yield criteria and the
power law s¼K«n. The pear shape is assumed to be
long enough to satisfy plane strain condition, that
is, «z¼ 0. The remaining principal strains are derived
in all sections, after which boundary conditions are
invoked and the final equations are solved for the
unknown variables using the Newton–Raphson
method.

The major assumptions used in the analysis are:

(a) the longitudinal strain is ignored; therefore, the tube
is assumed to be in plane strain state during the
deformation;

(b) the tube is subdivided into three deforming sec-
tions: arc section, linear section, and free expan-
sion section;

(c) the deformed shape at the free expansion section
is assumed to be an arc;

(d) the tube is considered to be a thin wall structure,
and hoop stress is assumed to be uniform
through the thickness;

(e) the hoop stress is continuous along the hoop
direction.

3 STRESS AND STRAIN ANALYSIS

3.1 Arc section

3.1.1 Stress analysis

Figure 4 shows the arc section where a summation of
forces is taken with respect to an element cut from
the arc section.

Taking summation of forces in the hoop direction,
the following can be obtained

suðuþ duÞt � suðuÞt � sfr du ¼ 0

dsu

du
¼ r

t
sf

sf ¼ m srj j
Note that the absolute symbol is used to guarantee
that the friction stress is positive

dsu

du
¼ rm

t
srj j ð1Þ

(a)

Fig. 2(a) Corner fill test

(b)

Fig. 2(b) Pear-shaped expansion test
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The summation of forces in the radial direction
leads to

pA1 þ srA2 � 2suA3 sin
u

2
¼ 0

A1 ¼ ðr � tÞu
A2 ¼ ru
A3 ¼ t

8<
:
pðr � tÞuþ srru� 2sut sin

u

2
¼ 0

As u ! 0; lim
u!0

2 sin
u

2
¼ u

pðr � tÞuþ srru� sutu ¼ 0

sr ¼ �pðr � tÞ � sut

r
ð2Þ

Under plane strain condition, the longitudinal strain is
zero. Using Hencky’s Total Deformation theory [13],
the balance equation in the longitudinal direction
leads to equation (3). Thus, from equations (1), (2),
and (3), equation group (4) is obtained. This equation
describes the interrelationships of stresses in the arc
section

"z ¼ d"

ds
ðsz � ðsu þ srÞ=2Þ ¼ 0

sz ¼ ðsu þ srÞ=2 ð3Þ
dsu

du
¼ rm

t
srj j

sr ¼ �pðr � tÞ � sut
r

sz ¼ ðsu þ srÞ=2

8>><
>>: ð4Þ

3.1.2 Effective stress and strain under plane
strain conditions

Assuming von Mises yield criterion, effective stress
can be represented by equation (5). By substituting
equation (3) into equation (5), the effective stress
under plane strain conditions is obtained as given in
equation (7)

s ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsz � srÞ2 þ ðsr � suÞ2 þ ðsu � szÞ2

q
ð5Þ

s ¼
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsu � srÞ2

q
ð6Þ

s ¼ 1

b
ðsu � srÞ b ¼ 2ffiffiffi

3
p ð7Þ

Effective strain is expressed by equation (8). Owing to
the plane strain condition, the longitudinal strain «z

Fig. 3 Three sections of deformed shape in half tubular model

Fig. 4 Stresses acting on arc section element
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equals 0, as shown in equation (9). Substituting
equation (9) into equation (8) and considering a
positive hoop strain «u, equation (10) is obtained

" ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"z � "rÞ2 þ ð"r � "uÞ2 þ ð"u � "zÞ2

q
ð8Þ

"z ¼ 0
"u þ "r ¼ 0

�
ð9Þ

" ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffi
"u2

p
" ¼ b"u b ¼ 2ffiffi

3
p ð10Þ

The power law will be used to formulate the relation
between effective stress and effective strain as given
by equation (11). By substituting equations (7) and
(10) into equation (11), equations (12) and (13) can
be obtained

s ¼ K "n ð11Þ
1

b
ðsu � srÞ ¼ Kbn"u

n ð12Þ

su � sr ¼ Kbnþ1"u
n ð13Þ

Combining equation (13) and group equation (4), the
following can be obtained

dsu

du
¼ rm

t
srj j

sr ¼ �pðr � tÞ � sut

r

sz ¼ ðsu þ srÞ=2 su � sr ¼ Kbnþ1 "u
n

8>>>><
>>>>:

ð14Þ

3.1.3 Derivation of strain in arc section

In this section, the expression for strain will be
derived and also the stresses su, sr, sz will be
expressed as function of strain. From equation (14),
the following simultaneous equations can be solved
for su and sr, with the results given in equations
(15) and (16), respectively

sr ¼ �pðr � tÞ � sut

r
su � sr ¼ Kbnþ1"nu

8<
:
su ¼ Kbnþ1"nu � r � t=rð Þp

1� t=r
ð15Þ

sr ¼ � r � t=tð Þp� Kbnþ1"nu
r=t � 1

ð16Þ

From equation (15)

dsu

du
¼ d � Kbnþ1"nu � r � t=rð Þp� �

=ð1� t=rÞ�� ��� �
du

¼ d Kbnþ1"nu � r � t=rð Þp=ð1� t=rÞ� �
du

ð17Þ

The factors 1� t=r and r � t=r in equation (17) vary
with u, owing to the variation of thickness t with u.
But the variation is insignificant. Therefore, in the
differential dsu=du, these two factors are considered
to be constant along the hoop direction

dsu

du
¼ Kbnþ1n"n�1

u

1� t=r

d"u
du

ð18Þ

Substituting equation (16) into equation (14), the
following can be obtained

dsu

du
¼ rm

t
�Kbnþ1"nu � r � t=rð Þp

1� t=r

����
����

¼ rm

t

r � t=tð Þp� Kbnþ1"nu
r=t � 1

ð19Þ

Equating equations (18) and (19)

Kbnþ1n"n�1
u

1� t=r

d"u
du

¼ rm

t

r � t=tð Þp� Kbnþ1"nu
r=t � 1

Kbnþ1n"n�1
u

1� t=r

d"u
du

¼ m
r � t=tð Þp� Kbnþ1"nu

1� t=r

Kbnþ1n"n�1
u

d"u
du

¼ r � t

t
mp� mKbnþ1"nu ð20Þ

Although r=t can vary along the arc section owing to
variation of wall thickness t, the variation is
assumed to be insignificant. Thus l ¼ r

t � r
t0

Kbnþ1n"n�1
u

d"u
du

¼ ðl� 1Þmp� mKbnþ1"nu ð21Þ

a ¼ Kbnþ1

b ¼ �mKbnþ1

c ¼ ðl� 1Þmp

8<
: ð22Þ

Substituting equation (22) into equation (21),
equation (23) is obtained

an"n�1
u

d"u
du

¼ b"nu þ c ð23Þ

Z
an"n�1

u d"u
b"nu þ c

¼
Z

du

a

b

Z
dðb"nu þ cÞ
b"nu þ c

¼
Z

du

a

b
lnðb"nu þ cÞ þ c0 ¼ u ð24Þ

The constant of integration c0 can be obtained
by substituting the boundary condition u¼a and
«u¼ «N. Where «N is the strain at intersection
between the arc and linear sections, refer to Fig. 3

c0 ¼ a� a

b
lnðb"nN þ cÞ
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u� a ¼ a

b
ln

ðb"nu þ cÞ
ðb"nN þ cÞ

"u ¼ "nN þ c

b

� 	
eb=aða� uÞ � c

b

n o1=n

ð25Þ
Substituting equation (22) into equation (25),
equation (26) is obtained

"u ¼ ðl� 1Þp
Kbnþ1

� ðl� 1Þp
Kbnþ1

� "nN


 �
emðu�aÞ

� �1=n

ð26Þ

Substituting equation (26) into equations (15) and
(16), the equations for su and sr can be obtained
respectively. The equation for sz is obtained by
substituting equations (27) and (28) into equation (3)

su ¼ lKbnþ1"nN
l� 1

� lp


 �
emðu�aÞ þ ðl� 1Þp ð27Þ

sr ¼ � p� Kbnþ1"nN
l� 1


 �
emðu�aÞ ð28Þ

sz ¼ 1

2

ðlþ 1Þ
l� 1

Kbnþ1"nN � ðlþ 1Þp
� �

emðu�aÞ

þ ðl� 1Þ
2

p ð29Þ

The relationships for the stress and strain for the arc
section have now been derived as given in equation
group (30)

su ¼ lKbnþ1"n
N

l�1 � lp
� 	

emðu�aÞ þ ðl� 1Þp
sr ¼ � p� Kbnþ1"n

N

l�1

� 	
emðu�aÞ

sz ¼ 1
2

ðlþ1Þ
l�1 Kbnþ1"nN � ðlþ 1Þp

h i
emðu�aÞ þ ðl�1Þ

2 p

"u ¼ ðl�1Þp
Kbnþ1 � ðl�1Þp

Kbnþ1 � "nN

h i
emðu�aÞ

n o1=n

"r ¼ � ðl�1Þp
Kbnþ1 � ðl�1Þp

Kbnþ1 � "nN

h i
emðu�aÞ

n o1=n

"z ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð30Þ
3.2 Linear section

3.2.1 Stress analysis of linear section

Figure 5 shows an element in the linear section where
summation of forces is taken in the hoop and radial
directions.

Equilibrium equation in the hoop direction

suðx þ dxÞt � suðxÞt � sfdx ¼ 0

dsu

dx
¼ 1

t
sf

sf ¼ m srj j
dsu

dx
¼ m

t
srj j ð31Þ

Equilibrium equation in the radial direction sr ¼ �p
From equation (31), the following equation group
holds in the linear section

dsu

dx
¼ m

t
srj j

sr ¼ �p
sz ¼ ðsu þ srÞ=2

8><
>: ð32Þ

3.2.2 Derivation of strain in the linear section

The expressions for strain are derived and also the
stress components as a function of strain are estab-
lished. Combining equations (32) and (13), the fol-
lowing can be obtained

dsu

dx
¼ m

t
srj j

sr ¼ �p

sz ¼ ðsu þ srÞ=2
su � sr ¼ Kbnþ1"nu

8>>>><
>>>>:

ð33Þ

From equation (33), the following equations can be
derived

su ¼ Kbnþ1"nu � p
dsu

dx
¼ m

t
p

8<
: ð34Þ

dsu

dx
¼ dðKbnþ1"nu � pÞ

dx

dsu

dx
¼ Kbnþ1n"n�1

u

d"u
dx

ð35Þ
Substituting equation (35) into equation (34)

m

t
p ¼ Kbnþ1n"n�1

u

d"u
dx

ð36Þ

t ¼ t0e
"r ¼ t0e

�"u ð37Þ

Fig. 5 Stress acting on an element in the linear section
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m

t0e�"u
p ¼ Kbnþ1n"n�1

u

d"u
dx

m

t0
p ¼ Kbnþ1n"n�1

u e�"u
d"u
dx

ð38Þ

e�"u ¼ 1þ
X1
i¼1

ð�1Þið"uÞi
i!

m

t0
p ¼ Kbnþ1n"n�1

u 1þ
X1
i¼1

ð�1Þið"uÞi
i!

" #
d"u
dx

ð39Þ

Z
mp

Kbnþ1nt0
dx ¼

Z
1þ

X1
i¼1

ð�1Þið"uÞi
i!

" #
"n�1
u d"u

ð40Þ
mp

Kbnþ1nt0
x ¼ 1

n
"nu þ

X1
i¼1

ð�1Þi
i!

1

i þ n
ð"uÞiþn þ c0

Taking boundary conditions of x ¼ 0 and «u ¼ «N, c0
can be obtained

c0 ¼ � 1

n
"nN �

X1
i¼1

ð�1Þi
i!

1

i þ n
ð"NÞiþn ð41Þ

1

n
ð"nu � "nNÞ þ

X1
i¼1

ð�1Þi
i!

1

i þ n
ð"iþn

u � "iþn
N Þ

¼ mp

Kbnþ1nt0
x ð42Þ

From equation (42) the average hoop strain «u
distribution for the linear section can be obtained.
By substituting the hoop strain from equation (42)
into equation (43) the state of stress and strain
along the linear section can be determined

su ¼ Kbnþ1"nu � p
sr ¼ �p

sz ¼ 1
2Kbnþ1"nu � p
"r ¼ �"u
"z ¼ 0

8>>>>>><
>>>>>>:

ð43Þ

3.3 Free expansion section

3.3.1 Stress analysis of free expansion section

Figure 6 shows an element in the free expansion sec-
tion where hoop stress is assumed to be constant and
equal to hoop stress at the end of the linear section.
The equilibrium relations are given in equation (44)

su ¼ sQ

sr ¼ 0
sz ¼ 1

2ðsu þ srÞ

8<
: ð44Þ

3.3.2 Derivation of strain in free expansion section

In the free expansion section, average hoop strain is
assumed to be constant and equal to hoop strain at

the end of the linear section. «Q can be calculated
from equation (42) by substituting the boundary con-
ditions x ¼ L and «u¼«Q, which leads to equation (45)

1

n
ð"nQ � "nNÞ þ

X1
i¼1

ð�1Þi
i!

1

i þ n
ð"iþn

Q � "iþn
N Þ

¼ mp

Kbnþ1nt0
L ð45Þ

By substituting the hoop strain «Q from equation (45)
into equation (46) the state of stress and strain in the
free expansion section can be determined

su ¼ Kbnþ1"nQ
sr ¼ 0

sz ¼ 1
2Kbnþ1"nQ

"u ¼ "Q
"r ¼ �"Q
"z ¼ 0

8>>>>>>><
>>>>>>>:

ð46Þ

Equations (30), (43), and (46) provide average stress
and strain values in the arc, linear, and free
expansion sections. That is, the average stress and
strain values exhibited at the middle layer of the
tube. It should be noted that at the linear and free
expansion sections, the tubular material exhibits
bending and unbending as the material flows to the
die corner. Therefore the state of stress and strain in
the inner tube layer will be different from the outer
tube layer. Additional derivations for the inner and
outer layer are given in Appendix 2.

4 ESTABLISHMENT OF BOUNDARY CONDITIONS

4.1 Boundary condition calculation

From the above analysis, the stress and strain in the
three sections are solved and expressed in explicit
equations. But the boundary condition «N is involved
in the equations of the linear section and the arc sec-
tion. Before calculating stress and strain distribution,
«N should be solved for first. «N can be obtained by
the constant volume condition. Before deformation,

Fig. 6 Stress acting on an element in the free expansion
sections
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the volume of the tube with unit longitudinal dis-
tance can be expressed by equation (47), taking one
half of the tube section

V0 ¼ prt ð47Þ
The volume after deformation can be calculated as

V ¼
Z st

0

tds ð48Þ

where st is the curvilinear length of the deformed
tube and t is the thickness of the deformed tube

V ¼ V0 ð49Þ
The volume of the arc section can be calculated as
follows

Vc ¼
Z a

0

trdu

"u ¼ ln
t0
t

) t ¼ t0e
�"u

Vc ¼
Z a

0

rt0

· e� "n
N
� ðl�1Þp=Kbnþ1½ �f geb=aðu�aÞþ ðl�1Þp=Kbnþ1½ �ð Þ1=ndu

ð50Þ
The volume of the linear section can be calculated as
follows

VL ¼ R L

0 tdx

¼ R L

0 t0e
�"udx

From equation (39)

dx¼ t0
pm

Kbnþ1n"n�1
u e"ud"u

VL¼
Z L

0

t0e
�"udx

VL¼
Z "Q

"N

t0e
�"u

t0
pm

Kbnþ1n"n�1
u e�"ud"u

� �

VL¼ðt0Þ2Kbnþ1

pm

Z "Q

"N

n"n�1
u e�2"ud"u

e�2"u ¼1þ
X1
i¼1

ð�2Þið"uÞi
i!

VL¼ðt0Þ2Kbnþ1

pm

Z "Q

"N

n"n�1
u 1þ

X1
i¼1

ð�2Þið"uÞi
i!

" #
d"u

VL¼ðt0Þ2Kbnþ1

pm

Z "Q

"N

n"n�1
u þ

X1
i¼1

ð�2Þi
i!

nð"uÞiþn�1

" #
d"u

VL¼ðt0Þ2Kbnþ1

pm

· ð"nQ�"nNÞþ
X1
i¼1

ð�2Þi
i!

n

nþi
ð"nþi

Q �"nþi
N Þ

( )
ð51Þ

The volume of the free expansion section can be
calculated as

VF ¼ R SF

0 tds

¼ R SF

0 t0e
�"uds

¼ R SF
0 t0e

�"Qds

ð52Þ

SF is the arc length of the free expansion section,
shown in Fig. 7 which can be calculated as follows

SF ¼ rr ·’
¼ ðr � Lctgðp � aÞÞ’
¼ ðr � Lctgðp � aÞÞðp � aÞ

ð53Þ

Substituting equation (53) into equation (52)

VF ¼ R SF

0 t0e
�"Qds

¼ t0e
�"QSF

¼ ðr � Lctgðp � aÞÞðp � aÞt0e�"Q

ð54Þ

The sum of the volumes of the three sections equals
the volume of the deformed tube, as depicted in
equation (55). By substituting equations (50), (51),
and (54) into equation (55), equation (56) can be
obtained

V ¼ VC þ VL þ VF ð55Þ

V¼ prt0 ¼
Z a

0

rt0

e� "n
N
� ðl�1Þp=Kbnþ1½ �f gemðu�aÞþ ðl�1Þp=Kbnþ1½ �ð Þ1=ndu

þ ðt0Þ2Kbnþ1

pm ð"nQ � "nNÞ þ
P1
i¼1

ð�2Þi
i!

n
nþi ð"nþi

Q � "nþi
N Þ

� �
þðr � Lctgðp � aÞÞðp � aÞt0e�"Q

ð56Þ
In equation (56), if K, n, p, m, r,t0, L, a are known there
will be two unknown variables «N and «Q. To solve
these two variables equation (45) and equation (56)
are used as shown in group equation (57)

prt0¼
R a

0 rt0

e� "n
N
� ðl�1Þp=Kbnþ1½ �f gemðu�aÞþ ðl�1Þp=Kbnþ1½ �ð Þ1=ndu

þðt0Þ2Kbnþ1

pm
ð"nQ�"nNÞþ

P1
i¼1

ð�2Þi
i!

n

nþ i
ð"nþi

Q �"nþi
N Þ

� �
þðr�Lctgðp�aÞÞðp�aÞt0e�"Q

1

n
ð"nQ�"nNÞþ

X1
i¼1

ð�1Þi
i!

1

iþn
ð"iþn

Q �"iþn
N Þ¼ mp

Kbnþ1nt0
L

8>>>>>>>>>>><
>>>>>>>>>>>:

ð57Þ
Equation (57) can be solved for «N and «Q using the
Newton–Raphson method. The solution scheme is
given in Appendix 3.

4.2 Pressure prediction

The above analysis of stress and strain is based on
knowing the pressure. Thus a method to predict the
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required pressure needs to be established when the
deformation of the tube is known. In fact, the
deformed shape of the tube can be determined by
the parameter L. From equation (46), hoop stress in
free expansion can be expressed by the following
equation

su ¼ Kbnþ1"nQ ð58Þ
Hoop stress can also be calculated by the equilibrium
equation in the radial direction (Refer to Fig. 6), as
given in equation (59)

sut � prr ¼ 0 ) su ¼ rr

t
p ð59Þ

t ¼ t0e
�"Q ð60Þ

Substituting equations (58) and (60) into equation
(59), an expression for pressure p, can be obtained
as given in equation (61)

p ¼ Kbnþ1"nQt0e
�"Q

rr
ð61Þ

rr ¼ r � Lctgðp � aÞ

p ¼ Kbnþ1"nQt0e
�"Q

r � Lctgðp � aÞ ð62Þ

Equation (62) can be combined with equation (58) to
form group equation (63). From equation (63) «N, «Q ,
and p can be solved provided K, n, p, m, r, t0, L, a are
known quantities

prt0¼
R a

0 rt0

e� "n
N
�½ðl�1Þp=Kbnþ1 �f gemðu�aÞþ ðl�1Þp=Kbnþ1½ �ð Þ1=ndu

þðt0Þ2Kbnþ1

pm
ð"nQ�"nNÞþ

X1
i¼1

ð�2Þi
i!

n

nþi
ð"nþi

Q �"nþi
N Þ

( )

þðr�Lctgðp�aÞÞðp�aÞt0e�"Q

mp

Kbnþ1nt0
L ¼ 1

nð"nQ�"nNÞþ
P1
i¼1

ð�1Þi
i!

1
iþnð"iþn

Q �"iþn
N Þ

p¼Kbnþ1"nQt0e
�"Q

r�Lctgðp�aÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð63Þ
Equation (63) is non-linear; therefore, pressure P is
solved by using the Newton–Raphson. The solution
scheme is given in Appendix 3.

5 RESULTS AND DISCUSSION

5.1 Comparison between analytical model
and finite element simulation results

Finite element simulations of the pear-shaped
tribotest were carried out to validate the closed-form

solutions developed for radial stress, longitudinal
stress, hoop stress, effective stress and strain, longitu-
dinal strain, and radial strain given in equations (30),
(43), and (46) for the arc, linear, and free sections,
respectively, and the solutions for pressure prediction
given in equation (63). The finite element simulations
were carried out by commercial software, DEFORM
2D. Various case studies were simulated, a subset of
which is presented in this paper. Table 1 shows vari-
ables used for model validation. The model contained
a total of 1000 elements, 5 elements being across the
wall thickness. Figures 8 and 9 show the contact pres-
sure, effective stress, effective strain, and predicted
pressure from FEA and the analytical model. Figure 8
shows results for m ¼ 0.05, and Fig. 9 for m ¼ 0.15.
There is good agreement between model and FEA,
particularly, for the linear and expansion sections.
The model slightly over predicts the contact pressure
in the arc section. Note: The curvilinear length shown
in the x-axes represents the length from the arc section
of the pear tube (point A) to the free expansion section,
point B (Table 1).

5.2 Potential applications of the developed
closed-form solutions

The established closed-form solution can be used as
a quick tool for studying field variables for THF parts
with geometrical configuration similar to pear
shaped. For instance, the interface pressure distribu-
tion at the die-wall interface shown in Figs 8(a) and
9(a) demonstrates that with complex die geometry,
the interface pressure can vary drastically from one
region to the other. Figure 8(a) shows that for an
internal fluid pressure Pi of 30 MPa, the pressure
at the die-wall interface varied from 12 MPa to
32 MPa. This high-pressure gradient provides an
insight into the tribological conditions inherent in
the process. As discussed in section 1, experimental
determination of friction coefficient values using the
expansion zone tribotest is difficult. The established
closed-form solutions provide for a quick way of
determining friction coefficient and could be used
for optimizing a pear-shaped tribotest. More details
on the applications of the analytical model are given
in Part 2 of this paper [14].

5.2.1 Prediction of friction coefficient by
calibration chart

Having derived the expressions for interface pressure
at the arc and linear sections, it is now possible to
determine the interface friction. Owing to the com-
plex interaction of variables, the friction coefficient
cannot be expressed explicitly. Thus, friction calibra-
tion charts are constructed. These charts can be used
to estimate friction coefficient of the lubricant tested
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using the pear-shaped tribotest. The four equations
used to establish the calibration curves are based
on volume constancy, pressure prediction, and
geometric relationship between L and PH.
1. Volume constant equation recapitulated from

equation (57) can be rearranged into equation (64)

prt0 ¼
R a

0 rt0

·e� "n
N
� ðl�1Þp=Kbnþ1½ �f gemðu�aÞþ ðl�1Þp=Kbnþ1½ �ð Þ1=ndu

þ 1
p=K

ðt0Þ2bnþ1

m ð"nQ� "nNÞþ
P1
i¼1

ð�2Þi
i!

n
nþi ð"nþi

Q � "nþi
N Þ

� �
þðr�Lctgðp�aÞÞðp�aÞt0e�"Q

1

n
ð"nQ� "nNÞþ

X1
i¼1

ð�1Þi
i!

1

iþn
ð"iþn

Q � "iþn
N Þ ¼ mL

bnþ1nt0
p=k

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð64Þ
2. Pressure prediction equation recapitulated from

equation (62) can be rearranged into equation
(65), which represents a normalized pressure
with material strength coefficient K

p=k ¼ bnþ1"nQt0e
�"Q

r � Lctgðp � aÞ ð65Þ

3. Geometrical relationship between L and H
Figure 10 shows the geometric parameters for the

pear-shaped tube. By trigonometric manipulation,
equations (66) and (67) can be obtained

rr ¼ r � Lctgðp � aÞ ð66Þ

L ¼ PH� 2r

cscðp � aÞ � ctgðp � aÞ ð67Þ

Combining equations (64), (65), (66), and (67),
equation group (68) can be obtained

prt0 ¼
R a

0 rt0

· e� "n
N
� ðl�1Þ=bnþ1½ �p=kf gemðu�aÞþ ðl�1Þ=bnþ1½ �p=kð Þ1=ndu

þ 1
p=K

ðt0Þ2bnþ1

m
ð"nQ�"nNÞþ

X1
i¼1

ð�2Þi
i!

n

nþi
ð"nþi

Q �"nþi
N Þ

( )

þðr�Lctgðp�aÞÞðp�aÞt0e�"Q

p

K

m

bnþ1nt0
L ¼ 1

n
ð"nQ�"nNÞþ

X1
i¼1

ð�1Þi
i!

1

iþn
ð"iþn

Q �"iþn
N Þ

p

K
¼ bnþ1"nQt0e

�"Q

r�Lctgðp�aÞ
L ¼ PH�2r

cscðp�aÞ�ctgðp�aÞ ð68Þ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:
In equation group (68), if dimensions r, t, and a and
material properties K and n are known, then there
will be six unknown variables: PH, L, p, m, «N, and
«Q. Because the internal pressure Pi and protrusion
height PH can be obtained from experiment, the
unknown variables in equation (68) are L, m, «N, and
«Q. Thus, equation group (68) can be solved to
obtain m. However, m cannot be determined
explicitly; therefore calibration chart is used to
estimate m. The calibration chart is composed of a
family of curves (PH versus p/K) for different
friction coefficient values. Figure 11 shows an
example of a friction calibration chart for a pear-
shaped expansion test for tube material whose flow
stress follows power law (s¼K "n), where n ¼ 0.52,
r ¼ 17.46 mm, t ¼ 1.24 mm, and die vertex angle,
c¼ 48�. By superimposing on a graph the
normalized internal pressure (p/K) and protrusion
height PH measured from a pear-shaped tube, the

Table 1 Variables for model validation

Material parameters:

K ¼ 500MPa, n ¼ 0.5

Geometric parameters:

L1 ¼ 50mm, L2 ¼ 46mm, PH1 ¼ 136mm,

PH2 ¼ 132mm, r ¼ 50mm, t ¼ 4mm, a ¼ 110�

Process parameters

m1 ¼ 0.05, m2 ¼ 0.15, Pi ¼ 30MPa

Fig. 7 Free expansion section of tube

858 G Ngaile and C Yang

Proc. IMechE Vol. 222 Part B: J. Engineering Manufacture JEM1057 � IMechE 2008



Fig. 8 Analytical model and FEA; comparison of various field variables for m ¼ 0.05

Fig. 9 Analytical model and FEA; comparison of various field variables for m ¼ 0.15
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friction coefficient for a tested lubricant can be
determined. Note that the friction calibration chart
is dependent on strain hardening exponent of
material, n, die geometry, and tube size. Part 2 of
this paper presents a case study where friction
coefficients for two lubricants were determined [14].

6 CONCLUSIONS

Closed-form solutions that characterize the pear-
shaped tribotest for tube hydroforming were estab-
lished based on a mechanistic approach. The analyti-
cal model makes possible the computation of field
variables as a function of friction coefficient, fluid
pressure, and strain hardening exponent of material.
The variables that can be computed from the equa-
tions are (a) contact pressure distribution, (b) effective
stress and strain distribution, (c) longitudinal stress
and strain distribution, and (d) hoop stress distribu-
tion. The model also provides for determining the
coefficient of friction via friction calibration curves.

As well as facilitating the determination of friction
coefficient for tested lubricants, the analytical model

can be used as a tool in rapid optimization of pear-
shaped tribotest conditions. For a predetermined
test pressure band, pear-shaped die geometry can
be optimized to suit type of tubular materials to be
tested and tube sizes.
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APPENDIX 1

Notation

K strength coefficient
L linear section length
n strain hardening exponent
PH protrusion height of deformed tube
Pi/p internal pressure
r outer radius of tube
rr corner radius of tube
t deformed tube thickness
t0 initial tube thickness
VC volume of tube in arc section
VF volume of tube in free expansion section
VL volume of tube in linear section

a centre angle of arc section
" effective strain
«N hoop strain at the intersection between arc

and linear sections
«Q hoop strain at the free expansion zone
«r radial strain
«z longitudinal strain
«u hoop strain
l ratio of outer radius to tube thickness
m friction coefficient
s effective stress
sr radial stress
sz longitudinal stress
su hoop stress
f centre angle of free expansion section
c vertex pear-shaped die angle

APPENDIX 2: STRESS AND STRAIN ANALYSIS
IN THE OUTSIDE AND INSIDE TUBE LAYERS

Linear section

In the linear section, the tube is experiencing stretch-
ing and bending. The inside layer is stretched while

the outside layer is compressed. The strain and stress
in the inside and outside layers can be determined
based on the calculated hoop strain in the middle
layer as illustrated below. Figure 12 shows how bend-
ing evolves in the linear section.

From Fig. 12 equation (69) can be obtained

"u;i ¼ ln
Ln0

Li


 �
¼ ln

e"uLn

Li


 �
¼ lnðe"u Þþ ln

Ln

Li


 �

¼ "u þ ln
Rn

Rn� t0=2ð Þ

 �

"u;o ¼ ln
Ln0

Lo


 �

¼ ln
e"uLn

Lo


 �
¼ lnðe"u Þ þ ln

Ln

Lo


 �

¼ "u þ ln
Rn

Rnþ t0=2ð Þ

 �

ð69Þ
Rn ¼ r � t0=2

"u;i ¼ "u þ ln
r � t0=2

r � t0


 �
¼ "u þ ln 1þ t0=2

r � t0


 �

"u;o ¼ "u þ ln
r � t0=2

r


 �
¼ "u þ ln 1� t0=2

r


 �
ð70Þ

The hoop strain in outside and inside layers «u,o, «u,i
can be calculated from equation (70) if the average
hoop strain «u is known. Since other state variables
are based on the hoop strain, knowing «u,o and «u,i
implies that other state variables for the inside
and outside layers can be determined. Note that the
average strain for the arc, linear, and free expansion
sections are determined by equations (30), (43),
and (46).

Free expansion section

In the free expansion section, the tube is also experi-
encing stretching and bending. The inside layer is
compressed while the outside layer is stretched rela-
tive to the middle layer. The strain and stress in the
inside and outside layers can be determined based
on the calculated hoop strain in the middle layer as
illustrated below

Fig. 12 Bending in the linear section
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"u;i ¼ "u þ ln
rr � t0e

"u

rr � t0e"u=2ð Þ

 �

þ ln
r � t0=2ð Þ
r � t0


 �
ð71Þ

"u;o ¼ "u þ ln
rr

rr � t0e"u=2ð Þ

 �

þ ln
r � t0=2ð Þ

r


 �
ð72Þ

The hoop strain in outside and inside layers «u,o,
«u,i can be calculated from the above equations if

the average hoop strain «u is known. Similarly,
if «u,o and «u,i are known all other state variables
for the inside and outside layers can be
determined.

APPENDIX 3: SOLUTION SCHEME FOR
EQUATION (63)

The Newton–Raphson Method is used to solve non-
linear equation (63) in the following steps.

1. Reform equation (63) into equation (73)

Fig. 13 Bending in the free expansion section

F ¼
f1

f2

f3

8><
>:

9>=
>;¼

f1ðp;"N;"QÞ¼
R �

0 rt0e
� "n
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� ð��1Þp
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h in o
e�ð���Þþ ð��1Þp

K�nþ1ð Þ
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ð�2Þi
i!

n
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Q �"nþi
N Þ


 �
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r�Lctgð���Þ �p ð73Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

"u;i ¼ ln Li0
Li

� � ¼ ln ðrr�tÞv
ðRn�t0=2Þ’½ �

n o
¼ ln ðrr�tÞ Ln0= rr�t=2ð Þ½ �

ðRn�t0=2Þ’
n o
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r
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(73)
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2. Obtain the Jacobian matrix of F

Df ðp; "N; "QÞ ¼

@f1
@p

@f1
@"N

@f1
@"Q

@f2
@p

@f2
@"N

@f2
@"Q

@f3
@p

@f3
@"N

@f3
@"Q

2
6666664

3
7777775

ð74Þ

3. Provide initial guess to three unknown variables
p, «N, «Q

4. Obtain p, «N, «Q by iterations as shown in equa-
tion (75)

p
"N
"Q

2
4

3
5
kþ1

¼
p
"N
"Q

2
4

3
5
k

� Df ðp; "N; "QÞ
� ��1

k

p
"N
"Q

2
4

3
5
k

ð75Þ
5. When jjF jj<error the iteration stops

Remarks. Poor initial guess for the three variables
may result in divergence. Alternatively, equation
(63) could be solved by using Newton–Raphson
methodby giving initial guess to one variable, pre-
ferably «N and iterate to obtain the other variables.
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