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Abstract: One loosely defines Mechanics as a physical theory that rests on the concepts of mass

and force and a law of inertia. In contrast, one loosely defines General Relativity as a physical

theory that describes how mass and energy curve spacetime, causing objects to move along the

straightest possible paths within that curved geometry. For a long time, scientists viewed

Mechanics and General Relativity as fundamentally irreconcilable theories, with neither being a

mere modification of the other, but rather grounded in distinct and incompatible physical

principles. This theorem reshapes that understanding by proving that a modified Mechanics, called

General Mechanics, fully aligns with General Relativity in the two-body problem. The trajectories

in both theories are the same, and it follows that both adopt the same physical principles. NOTE

FROM THE EDITOR-IN-CHIEF: In a blinded assessment, I asked five scientists to verify the

mathematics of the parity theorem presented in this article before the article would undergo a

review. All of them verified the mathematics. I took this additional step because of the theorem’s

potentially significant impact on the fields of Mechanics and Relativity. VC 2025 Physics Essays
Publication. [http://dx.doi.org/10.4006/0836-1398-38.2.122]

R�esum�e: La m�ecanique est grossièrement d�ecrite comme une th�eorie physique reposant sur les

concepts de masse et de force ainsi que sur le principe d’inertie. Quant �a elle, la relativit�e g�en�erale

est d�epeinte comme une th�eorie physique d�ecrivant comment la masse et l’�energie courbent

l’espace-temps, amenant les objets �a se d�eplacer selon les trajectoires les plus droites possibles

dans cette g�eom�etrie courb�ee. Pendant longtemps, les scientifiques ont consid�er�e la m�ecanique et la

relativit�e g�en�erale comme des th�eories fondamentalement irr�econciliables, aucune n’�etant une simple

modification de l’autre, mais plutôt fond�ees sur des principes physiques distincts et incompatibles. Le

th�eorème propos�e ici remanie cette compr�ehension en d�emontrant qu’une m�ecanique modifi�ee, appel�ee

m�ecanique g�en�erale, s’aligne pleinement avec la relativit�e g�en�erale dans le cas du problème �a deux

corps. Les trajectoires pr�edites par les deux th�eories sont identiques, ce qui implique qu’elles reposent

sur les mêmes principes physiques. NOTE DU R�EDACTEUR EN CHEF: Lors d’une �evaluation en

double aveugle, j’ai demand�e �a cinq scientifiques de v�erifier la d�emonstration math�ematique du th�eo-

rème de parit�e pr�esent�e dans cet article avant qu’il ne soit soumis �a une �evaluation. Tous ont valid�e
cette d�emonstration. J’ai pris cette mesure de validation suppl�ementaire en raison de l’impact poten-

tiellement significatif de ce th�eorème sur les domaines de la m�ecanique et de la relativit�e.

Key words: Electromagnetism; Field; Fragment of Energy; General Mechanics; General Relativity; Interaction Force;

Mechanics; Relativity; Schwarzschild; Spacetime.

I. INTRODUCTION

Mechanics, loosely defined, is a physical theory based on

mass, force, and inertia, whereas General Relativity (GR)

describes how mass and energy curve spacetime, guiding motion

along the straightest paths in that curvature. Over the last one

hundred years, their outwardly antithetical appearances led sci-

entists to believe they are irreconcilable, though they never could

prove this.b) Not only was this irreconcilability never proven,

this article proves for the two-body problem that it is false—a

revelation that will surprise scientists and the populous at large.

Moreover, the article presents the precise modification to

Mechanics that makes it in full agreement with General Relativ-

ity for the two-body problem. Throughout the article, we have

referred to the modified Mechanics as General Mechanics (GM).

In the next two sections, we state the Theorem and give

its proof.c) The Theorem starts with two sets of three govern-

one in Ref. 1 (p. 148), Ref. 2 (pp. 42, 111, and 113), Ref. 3 (pp. 117 and

120), Ref. 4 (pp. 8–11 and 65), and Ref. 5 (pp. 11, 15–17, 20, and 21). Claim

two is in Ref. 1 (p. 147), Ref. 2 (pp. 107 and 131), Ref. 4 (pp. 58–60), and

Ref. 6 (pp. 4 and 177). Claim three is in Ref. 1 (p. 149) and Ref. 4 (p. 72).

Claim four is in Ref. 2 (p. 107) and Ref. 5 (pp. 10 and 114). Finally, one

finds claim five made in Ref. 2 (p. 170).

a)lmsilver@ncsu.edu
b)The two major arguments made for the two theories being irreconcilable

were (1) the principle of equivalence claim, based on the paradox that iner-

tial mass and gravitational mass are inexplicably equal, and (2) the inverse

square law claim, which points to an instantaneous gravitational effect over

a finite distance. Other claims were (3) the limitation claim, arguing that the

concept of force is for weak fields only, (4) the relativity claim, which points

to the use of the inertial frame in mechanics as violating relativity, and (5)

the least action claim, which applies the principle of least action in general

relativity instead of the principle of inertia. For example, one finds claim

c)We first published this theorem in an appendix of an engineering journal,7

where the theorem itself received little scrutiny, and here we have published

the proof in a standalone physics journal purposefully reviewed by a large

number of physicists and readily available for the readers to judge for

themselves.
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ing equations, the first set for GM and the second set for GR.

We formulated the two-body problem in each set as a one-

body problem expressed in terms of polar coordinates

because this is how Schwarzschild formulated it for GR.8

For completeness, Appendix A gives the development of the

conversion of a two-body problem into a one-body problem.

The Theorem proves, with identical initial conditions, that

the two theories produce identical trajectories.

The three governing equations for GM consist of Eq. (1),

which is the Minkowski spacetime metric in polar coordi-

nates, Eq. (2), which is Newton’s general law of inertiad) in

polar coordinates, and Eq. (3), which is the general universal

law of gravitation in polar coordinates. Equation (2) also

specifies the relativistic expressions for velocity and acceler-

ation, derived from Eq. (1). For completeness, Appendix B

gives those derivations. The third equation is the universal

law of gravitation now generalized so it accommodates rela-

tivistic motion.e) Equations (1)–(3) along with the initial con-

ditions are sufficient to predict fully the trajectory of a body.

The three governing equations for GR consist of Eq. (4),

which is the Schwarzschild metric in polar coordinates,

Eq. (5), which is the equation governing the spatial behavior

of a body in polar coordinates, and which one obtains from

the GR apparatus, and Eq. (6), which is the expression for

angular momentum.1 The GR community well knows all

three equations and, with the initial conditions, they predict

fully the trajectory of a body.

The GM–GR parity theorem states that the trajectories

determined from the set of GM equations are identical to the

trajectories determined from the set of GR equations. Again,

Sec. II states the Theorem, and Sec. III gives the proof. Sec-

tion IV closes with several remarks.

II. STATEMENT OF THE GM–GR PARITY THEOREM

Let ðÞ0¢dðÞ=ds, let Eqs. (1)–(3) govern GM, andf)

Eqs. (4)–(6) govern GR:

General Mechanics (GM)

c2ds2 ¼ c2dt2 � dr2 � r2d/2; (1)

FRr ¼ laRr; FR/¼laR/; l¢
mamb

maþmb

vRr¢r0; vR/¢r/0; aRr¢r00 � r/02; aR/¢r/00 þ2r0/0;

(2)

FRr ¼ �
Gmamb

r2
1þ 3 vR/=c

� �2
� �

; FR/ ¼ 0: (3)

General Relativity (GR)

c2ds2 ¼ c2 1� rs=rð Þdt2
G � 1� rs=rð Þ�1dr2 � r2d/2;

rs¢
2GM

c2
;

(4)

d2u

d/2
þu�3GM

c2
u2¼GM

h2
; u¢

1

r
; M¢maþmb; (5)

h ¼ rvR/ ¼ constant: (6)

The trajectories rðsÞ and /ðsÞ determined from the set of

equations (1)–(3) and independently from the set of equa-

tions (4)–(6) are identical when prescribed with identical ini-

tial conditions r 0ð Þ; r0 0ð Þ;/ 0ð Þ; and /0ð0Þ.

III. PROOF

We prove the parity of GM and GR by deriving Eqs.

(4)–(6) from Eqs. (1)–(3). First, recognize that the spatial

coordinates r and / and the proper time s are the same in

both sets of equations and that the coordinate time t in GM

and the coordinate time tG in GR are different. Given that

the coordinate time t in GM and the coordinate time tG in

GR are different, the first step taken is to determine whether

there exists an analytical relationship between them. One

d)Equations (1) and (2) originate from the Theory of Special Relativity.
e)The discovery of the general universal law of gravitation was largely a for-

tunate stroke of serendipity. In early 2020, with extra time on our hands due

to the Covid-19 epidemic, we decided to attempt to reproduce results in GR

by modifying the universal law of gravitation to account for relativistic

effects, unsure whether others before us would have already tried our

approach (See Einstein’s attempt at this9). The first author’s focus was theo-

retical, and the second author’s focus was numerical. We started by examin-

ing the precession of Mercury as it orbits the Sun because this problem

yields exact solutions in GR to which we could compare our solutions. Karl

Schwarzschild (1873–1916) discovered them in 1916, in the last year of his

life, one year after Albert Einstein (1879–1955) introduced GR. Anyway,

based on various considerations, we hypothesized that a modification to the

law that might reproduce GR would be a multiplication factor of the analyti-

cal form B ¼ 1þ f r; hð Þ. The goal was to find the function f r; hð Þ, in which

r is the distance between Mercury and the Sun and h is the specific relativis-

tic angular momentum of the Mercury–Sun system about its mass center.

We empirically determined that f r; hð Þ ¼ 3ðh=crÞ2. The precession of Mer-

cury that we found agreed numerically within three decimal places to the

precession in GR from the Schwarzschild solution. We then examined the

problem of light traveling past the Sun using the same relativistic universal

law of gravitation. With it, we found numerical agreement with the

Schwarzschild solution, again, to three decimal places, and published these

results in 2020.10 The results in that article were for weak gravitational

fields, and soon after, we verified agreement in strong gravitational fields,

too, concluding that we had stumbled on a mechanics formulation of the the-

ory of general relativity.11 We first referred to it as the theory of spacetime

impetus, given that we were applying the new relativistic universal law of

gravitation in spacetime, with its spacetime or relativistic concept of impetus

(inertia). We were convinced that this new formulation is in full agreement

with GR but we were lacking a mathematical proof. After that, we focused

on seeking the mathematical proof presented in this article.

f)The term parity theorem refers to a theorem that shows that two sets of var-

iables and relationships (theories) are on par with each other, that is, that

there exists a one-to-one correspondence between the variables and the rela-

tionships in each set. Pictorially, the one-to-one correspondence is

GM GR

s r
/ t

� �
$ s r

/ tG

� �
:

In both GM and GR, the geometric variables that one measures directly
are the proper time � , the radial coordinate r, and the circumferential
angle �; they are the same in both theories, as shown. In addition, GM
defines a coordinate time t and GR defines a coordinate time tG that
differ. Not depicted, the relationships in GM are Eqs. (1)–(3), and in GR
they are Eqs. (4)–(6). Also not depicted, both theories share the
independent parameters G;ma;mb; and c. The proof first determines the
one-to-one correspondences between t and tG (tG tð Þ and t tGð Þ). Toward
this end, the proof first finds the functions dtG=dt and dt=dtG. They
establish the one-to-one correspondences sought because they lead to
tGðtÞ ¼ tG 0ð Þ þ

R t
0 dtG=dtð Þdt and tðtGÞ ¼ t 0ð Þ þ

R t
0 dt=dtGð ÞdtG. After

that, the proof determines the correspondences between the relationships
in GM and GR.
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confirms this by deriving the gravitational coordinate time

factor dtG=dt as follows:

1. Equate the proper time increments ds in Eqs. (1) and

(4),

c2dt2 � dr2 � r2d/2 ¼ 1� rs

r

� �
c2dt2

G

� 1� rs

r

� ��1

dr2 � r2d/2:

2. Cancel the term �r2d/2,

c2dt2 � dr2 ¼ 1� rs

r

� �
c2dt2

G � 1� rs

r

� ��1

dr2:

3. Divide by c2dt2 and solve for dtG=dtð Þ2,

1� 1

c2

dr

dt

� �2

¼ 1� rs

r

� �
dtG

dt

� �2

� 1

c2
1� rs

r

� ��1 dr

dt

� �2

;

dtG

dt

� �2

¼ 1

1� rs

r

1� 1

c2

dr

dt

� �2

þ 1

c2
1�rs

r

� ��1 dr

dt

� �2
" #

;

¼ 1

1� rs

r

1� 1

c2
�1þ 1

1� rs

r

� �
dr

dt

� �2
" #

:

4. Take the square root and form a common denominator,

dtG

dt
¼ 1

1� rs

r

1þ 1

c2

rs

r

1� rs

r

 !
dr

dt

� �2
2
4

3
5

8<
:

9=
;

1=2

: (7)

The gravitational time factor, Eq. (7), transforms coor-

dinate time t in GM to coordinate time tG in GR where

r > rs. The inverse dt=dtG of the gravitational time fac-

tor exists when r > rs; too.g)

Equation (7) shows how t in GM and tG in GR are

related. Equations (7) and (1) yield Eq. (4). Alterna-

tively, Eqs. (7) and (4) yield Eq. (1). It remains to

derive Eqs. (8) and (9) from Eqs. (1)–(3).

5. Substitute Eq. (3) into Eq. (2), cancel terms, and

invoke M¢ma þ mb,

aRr ¼ �G
M

r2
1þ 3

vR/

c

� �2
 !

; aR/ ¼ 0:

6. From step 5 and Eq. (2),

r00 � r/0
2 ¼ �G

M

r2
1þ 3

vR/

c

� �2
 !

;

0 ¼ r/00 þ 2r0/0:

7. The specific angular momentum is the same in GM

and GR,

h ¼ rvR/:

Differentiate h with respect to proper time, invoke the

product and chain rules, and from the second equation

in step 6 and from Eq. (2),

h ¼ r2/0; (8)

h0 ¼ r2/0
� �0 ¼ r2/00 þ 2rr0/0 ¼ r r/00 þ 2r0/0

� �
¼ 0:

Thus, h is constant, as Eq. (6) requires. Equation (8)

and step 7 have yielded Eq. (6). It remains to prove

Eq. (5) from Eqs. (1)–(3).

8. Differentiate u with respect to /, invoke the chain rule,

Eqs. (5) and (8),

du

d/
¼ d

d/
r�1 ¼ �r�2 dr

d/
¼ �r�2 dr

ds
ds
d/
¼ � 1

h

dr

ds
:

9. Again, differentiate with respect to /,

d2u

d/2
¼ d

d/
� 1

h

dr

ds

� �
¼ � 1

h

ds
d/

d

ds
dr

ds

� �
¼ � 1

h

ds
d/

d2r

ds2

¼ � 1

r2

ds
d/

� �2 d2r

ds2
:

10. From step 9,

d2u

d/2
þ u ¼ � 1

r2

ds
d/

� �2 d2r

ds2
þ 1

r

¼ � 1

r2

ds
d/

� �2 d2r

ds2
� r

d/
ds

� �2
 !

¼ � 1

r2

ds
d/

� �2

aRr:

11. From steps 10 and 5,

d2u

d/2
þ u ¼ 1

r2

ds
d/

� �2

G
M

r2
1þ 3

vR/

c

� �2
 !

¼ 1

r2

ds
d/

� �2

GM 1þ 3
vR/

c

� �2
 !

;

¼ GM

h2
1þ 3

h

rc

� �2
 !

¼ GM

h2
þ 3GM

c2
u2;

d2u

d/2
þ u� 3GM

c2
u2 ¼ GM

h2
: (9)

Equation (9) is identically Eq. (5). Thus, Eqs. (4)–(6) are on

par with Eqs. (1)–(3), where r > rs.

IV. REMARKS

The parity of GM and GR leads one to reassess mechan-

ics and relativity. Below, we provide several remarks about

g)Although the parity [Eq. (7)] only applies to r > rs, solutions to the prob-

lem when r < rs exist, too. Furthermore, the GM solution has no singularity

when crossing r ¼ rs, and the GR solution has a singularity when crossing

r ¼ rs.
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physical theories and the impact of this theorem on

unification.

A. Geometric theories

One says that the theory of general relativity (GR) is a

geometric theory.h) This characterization captures a number of

the theory’s stunning features. For one, GR is a geometric the-

ory because it describes the interaction between bodies by a

geometry’s curvature instead of by the conception of force.12

It retains the kinematic aspects of modern physical theories

while abandoning its kinetic aspects. Second, one might regard

GR to be a geometric theory, not just because of its curved

spacetime, but also because of its abandonment of the need for

laws that govern forces, replacing them with the very elegant

idea of equating the trajectory of a body and the curved geo-

metry’s straight line (geodesic). Finally, one could regard GR

to be a geometric theory because, by convention, physical

measurements are fundamentally geometric. In the two-body

problem treated in this article, the radial coordinate r, the cir-

cumferential angle /, and the proper time s constitute physical

measurements. Such concepts as the gravitational force and

energy are mathematical devices obtained together with the

introduction of such physical constants as mass m, universal

gravitational constant G, and speed of light limit c. However,

this reason applies to every physical theory, which by itself,

would make every physical theory a geometric theory.

B. Curved geometries as a physical principle

This brings us back to the question of the distinction between

GR with its curved Riemannian geometries and GM with its flat

Euclidean geometry, about whether the curved geometries in GR

introduce any new physical principles on top of constituting a

different mathematical formulation of a physical theory.

Historically, Nonrelativistic or Newtonian Mechanics

(NM)13 and electromagnetism (EM)14 employed the classical

principles of inertia and light. The modern principles began

with the Theory of Special Relativity (SR)15 by introducing

a modern principle of light expressed by an ordinary (Min-

kowski) spacetime metric. The principles of inertia and light

accurately predict the trajectories of light and massive bod-

ies, except in the case of bodies traveling at near-light speeds

under the influence of gravitation. In those cases, SR errone-

ously predicts that gravitation has no influence on the trajec-

tories of bodies. GR remedied that shortcoming but also

raised the question about the role of curved geometries.

Were curved geometries a new physical principle in them-

selves or were they a mathematical formulation in the first

theory to unite the modern principles of inertia, gravitation,

and light? The GM–GR parity theorem shows us that the

curved geometry for the two-body problem does not intro-

duce a new physical principle. We found its straight trajecto-

ries (geodesics) in its curved geometry to be equivalent to its

curved trajectories in a flat (straight) geometry. We found

that the shortcoming rests in SR not having updated the uni-

versal law of gravitation to accommodate relativistic effects.

C. Unification

The GM–GR parity theorem advances unification. Over

the last hundred years, scientists struggled to unite GR, the one

theory that addresses the principles of inertia, gravitation, and

light, with the theories that predict observations of behavior at

the other scales, thinking incorrectly that curved geometries

play a necessary role in unification and that mechanics would

be inadequate without them. We now know that a more general

mechanics, one that invokes the modern principle of light but

does not invoke curved geometries, can accommodate this

goal, too, and can return analysts to a problem-solving

approach that is both intuitive and familiar.

NOMENCLATURE

aR¢aRb � aRa ¼ Relativistic acceleration vector in the

one-body problem

aRa; aRb ¼ Relativistic acceleration vectors of bodies

a and b
aRr; aR/ ¼ Radial and circumferential components

of relativistic acceleration vector

c ¼ Speed of light

FR¢FRab ¼ Interaction force vector in the one-body

problem

FRab;FRba ¼ Interaction force vector by body a on

body b, and vice versa

FRr;FR/ ¼ Radial and circumferential components

of the force vector

G; rs¢2GM=c2 ¼ Universal gravitational constant, Schwarzs-

child radiusi)

h ¼ Specific relativistic angular momentum

ma;mb ¼ Masses of bodies a and b
r;/ ¼ Radial coordinate, circumferential angle

vR¢vRb � vRa ¼ Relativistic velocity vector in the one-

body problem

vRa; vRb ¼ Relativistic velocity vectors of bodies a
and b

vRC ¼ Relativistic velocity vector of the mass

center

vRr; vR/ ¼ Radial and circumferential components

of the relativistic velocity vector

l;M ¼ Reduced mass, combined mass

s; t; tG ¼ Proper time, coordinate time in GM,

coordinate time in GR

APPENDIX A: THE TWO-BODY PROBLEM

Figure 1 shows the two-body problem and the one-body

problem. In the two-body problem, the bodies are a distance r
from each other, and they are each moving. In the one-body

problem, the body is on the right a distance r from the origin.

h)We are using the term geometry in the broad context that includes the

curved geometry whose dimensions are spatial and temporal in addition to

the ordinary context of the Euclidean geometry whose dimensions are

spatial.

i)In the definition of the Schwarzschild radius, one often assumes that body a
is stationary, neglecting the mass of body b for which M ¼ ma. The defini-

tion of the Schwarzschild radius given in Eq. (5) accommodates more

broadly the two-body problem (see Appendix A).
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Begin with the two-body problem,

FRba ¼ maaRa; (A1a)

FRab ¼ mbaRb; (A1b)

FRab ¼ �FRab: (A1c)

Equations (A1a) and (A1b) govern the motion of body a
and body b. From Eq. (A1),

aR ¼
FRab

mb
� FRba

ma
¼ 1

mb
þ 1

ma

� �
FR ¼

1

l
FR;

FR ¼ laR: (A2)

Equation (A2) governs the motion of a body in the one-body

problem. In addition to the quantities defined in Eqs. (A1)

and (A2), one can define how the relativistic velocity vectors

in both problems relate to each other,

vR¢vRb � vRa; (A3a)

vRC¢
1

m
mavRa þ mbvRbð Þ; (A3b)

vRa ¼ �
mb

m
vR þ vRC; (A3c)

vRb ¼
ma

m
vR þ vRC: (A3d)

Equations (A3a) and (A3b) express the relativistic velocity

vector of the body in the one-body problem and the relativis-

tic velocity vector of the mass center in the two-body prob-

lem in terms of the relativistic velocity vectors of the two

bodies, and Eqs. (A3c) and (A3d) express the inverse rela-

tionships. Finally, note that the one-body problem and its

solution are independent of the velocity of the mass center

vRC, so the one-body problem applies to the class of prob-

lems that have the same vR and any vRC.

APPENDIX B: RELATIVISTIC KINEMATICS

Begin with Eq. (1) given again by

c2ds2 ¼ c2dt2 � dr2 � r2d/2: (B1)

In Eq. (B1), define the distance increment between two

points as dl¢
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr2 þ r2d/2

p
. Speed is v¢dl=dt.

1. Divide Eq. (B1) by c2dt2,

ds
dt

� �2

¼ 1� v

c

� �2

:

2. Define the Lorentz factor,

c¢
dt

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v

c

� �2
s : (B2)

In polar coordinates, the position vector, the velocity

vector, and the acceleration vector are

r¢rnr; (B3a)

v¢
dr

dt
¼ vrnr þ v/n/; (B3b)

a¢
dv

dt
¼ arnr þ a/n/: (B3c)

Above, nr is the radial unit vector, and n/ is the cir-

cumferential unit vector. The relativistic velocity vec-

tor and the relativistic acceleration vector are

vR¢
dr

ds
¼ vRrnr þ vR/n/; (B4a)

aR¢
dvR

ds
¼ aRrnr þ aR/n/: (B4b)

3. From Eqs. (B3b), (B4a), and (B2), the relationship

between the velocity vector and the relativistic velocity

vector is

vR ¼
dt

ds
dr

dt
¼ cv: (B5)

Next, develop the relationship between the acceleration

vector and the relativistic acceleration vector:

4. Differentiate vR in Eq. (B5) with respect to proper time

and invoke the chain and product rules and Eq. (B5),

aR ¼
dvR

ds
¼ dt

ds

d cvð Þ
dt
¼ c

dc
dt

vþ ca

� �
: (B6)

5. Determine an expression for the coordinate time deriv-

ative dc=dt of the Lorentz factor considering Eq. (B2)

and that v2 ¼ v � v,

dc
dt
¼ d

dt
1� v � v

c2

� ��1=2

¼ � 1

2
1� v � v

c2

� ��3
2

� 2v � a
c2

� �
¼ c3 v � a

c2
: (B7)

6. Finally, substitute Eq. (B7) into Eq. (B6) and rearrange

terms,

aR ¼ c
dc
dt

vþ ca

� �
¼ c c3v

v � a
c2
þ ca

� �

¼ c2 aþ c2

c2
v � að Þv

� �
: (B8)

Equation (B8) expresses the relationship between the

relativistic acceleration vector and the acceleration

vector. Next, derive the inverse relationship.

FIG. 1. The two-body problem and the equivalent one-body problem.
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7. Take the dot product of v and aR in Eq. (B8), form a

common denominator, and consider Eq. (B2),

v �aR¼ v �c2 aþc2

c2
v �að Þv

� �
¼ c2 v �að Þ 1þc2 v

c

� �2
 !

;

¼ c2 v �að Þ 1þ 1

1� v

c

� �2

v

c

� �2
0
B@

1
CA

¼ c2 v �a

1� v

c

� �2
1� v

c

� �2

þ v

c

� �2
 !

¼ c4v �a:

8. Finally, substitute step 7 into step 6 and solve for a,

aR ¼ c2 aþ c2

c2
v � að Þv

� �
¼ c2 aþ c2

c2

1

c4
v � aRð Þv

 !

¼ c2aþ 1

c2
v � aRð Þv;

a ¼ 1

c2
aR �

1

c2
v � aRð Þv

� �
:

Steps 3–8 determined the relationships between the

nonrelativistic and relativistic velocity and acceleration

vectors,

vR ¼ cv; (B9a)

v ¼ 1

c
vR; (B9b)

aR ¼ c2 aþ c2

c2
a � vð Þv

� �
; (B9c)

a ¼ 1

c2
aR �

1

c2
v � aRð Þv

� �
: (B9d)

Next, express the radial and circumferential compo-

nents of the relativistic velocity vector and of the rela-

tivistic acceleration vector in terms of r and / and

their derivatives with respect to proper time. Start with

expressing the rectangular components of the position

vector of a point in terms of their associated radial and

circumferential components as

r ¼ rcos/ð Þi1 þ rsin/ð Þi2: (B10)

From Eqs. (B3a) and (B10), the radial and circumfer-

ential unit vectors are

nr ¼
r

r
¼ 1

r
rcos/i1 þ rsin/i2ð Þ ¼ cos/i1 þ sin/i2;

n/ ¼ �sin/i1 þ cos/i2:

9. By differentiation with respect to proper time,

dnr

ds
¼ �sin/i1 þ cos/i2ð Þ d/

ds
¼ d/

ds
n/; (B11a)

dn/

ds
¼ � cos/i1 þ sin/i2ð Þ d/

ds
¼ � d/

ds
nr: (B11b)

10. From Eqs. (B4a) and (B11a),

vR ¼ vRrnr þ vR/n/ ¼
d

ds
rnrð Þ ¼

dr

ds
nr þ r

d/
ds

n/;

vRr ¼
dr

ds
; vR/ ¼ r

d/
ds
:

11. Finally, from Eqs. (B4b) and (B11) and the product

rule,

aR¼aRrnrþaR/n/¼
dvR

ds
¼ d

ds
vRrnrþvR/n/ð Þ;

¼ dvRr

ds
�vR/

d/
ds

� �
nrþ vRr

d/
ds
þdvR/

ds

� �
n/;

¼ d2r

ds2
�r

d/
ds

� �2
 !

nrþ
dr

ds
d/
ds
þdr

ds
d/
ds
þr

d2/
ds2

� �
n/;

¼ d2r

ds2
�r

d/
ds

� �2
 !

nrþ r
d2/
ds2
þ2

dr

ds
d/
ds

� �
n/;

aRr¼
d2r

ds2
�r

d/
ds

� �2

; aR/¼r
d2/
ds2
þ2

dr

ds
d/
ds
:

12. Let ðÞ0¢dðÞ=ds. From the above, the relativistic veloc-

ity vector, the relativistic acceleration vector, and their

components are

vR ¼ r0nr þ r/0n/; (B12a)

vRr ¼ r0; (B12b)

vR/ ¼ r/0; (B12c)

aR ¼ r00 � r/02
� �

nr þ r/00 þ 2r0/0
� �

n/; (B12d)

aRr ¼ r00 � r/02; (B12e)

aR/ ¼ r/00 þ 2r0/0: (B12f)
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