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Abstract: We examine the quantum-deterministic hypothesis that subatomic bodies consist of an

immense number of primitives (particles or fragments of energy) traveling at or near the speed of

light. Drawing on the well-proven principle of light and principle of impetus for the deterministic

theories, we setup corresponding principles that govern interactions between primitives. Then, we

studied the stability of a variety of structures formed from the primitives. One of the primitives

for which we present preliminary results has similarities to the photon. These findings suggest a

possible relationship between quantum-deterministic and quantum-statistical models and

likenesses noticed across realms that we now see as different. VC 2024 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-37.4.229]

R�esum�e: Nous examinons l’hypothèse d�eterministe quantique selon laquelle les corps

subatomiques sont constitu�es d’un nombre immense de primitives (particules ou fragments

d’�energie) voyageant �a la vitesse de la lumière ou �a une vitesse proche de celle-ci. En nous appuy-

ant sur le principe de la lumière et le principe d’impulsion, bien �etablis pour les th�eories

d�eterministes, nous �etablissons des principes correspondants qui r�egissent les interactions entre les

primitives. Ensuite, nous avons �etudi�e la stabilit�e de diverses structures form�ees �a partir des primi-

tives. L’une des primitives, pour laquelle nous pr�esentons des r�esultats pr�eliminaires, pr�esente des

similitudes avec le photon. Ces r�esultats suggèrent une relation possible entre les modèles quan-

tiques d�eterministes et quantiques statistiques, ainsi que des similitudes observ�ees entre des

domaines que nous consid�erons maintenant comme diff�erents.
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I. INTRODUCTION

Quantum mechanics (QM) predicts behavior by the

unique quantum-statistical approach of describing electrons

as probability clouds (orbitals) that have discrete (quantized)

electron energy states.1 The electrons form into atomic

arrangements, and molecular behavior emerges as atoms

combine to form molecules through electron sharing (cova-

lent bonds) and transfer (ionic bonds). By this approach, the

predictions of molecular structures, energies, and reactions,

underpinning modern chemistry and materials science,

became very precise—placing QM on a strong foundation.

In fact, scientists and science enthusiasts have long regarded

the precision attained to be remarkable given that the accom-

plishment did not require the prediction of the directly unob-

servable trajectories of subatomic bodies, let alone

primitives at some starting scale.

This article examines the prospect of determining the

trajectories of primitives toward the development of a

quantum-deterministic description. However, unlike past

intentions expressed explicitly or implied in the develop-

ments of pilot wave theory by de Broglie,2 Bohm,3 and

others, our intent is not to seek a description that can com-

pete with the quantum-statistical approach in its ability to

predict the behavior of molecular structures. Indeed, the

quantum-deterministic description would be much more

cumbersome computationally than the quantum-statistical

approach. Instead, the underlying intent is to strengthen our

understanding of the congruence between QM and the deter-

ministic theories—Newtonian mechanics (NM),4 electro-

magnetism (EM),5 special relativity (SR),6 and general

relativity (GR).7 The goal is that of the reductionist—to

increase our understanding of the correspondences among

the physical theories for the purposes of consolidating terms,

terminologies, mathematical techniques, and explanations of

the behaviors observed across the physical realms. The

quantum-deterministic description might also shed light on

assumptions made in the quantum-statistical approach and

the standard model. In short, exploring the quantum-

deterministic description is an important part of reduction.

In today’s deterministic theories, two physical principles

stand out—the principle of light and the principle of impe-

tus.8 Mathematically, one can formulate both of them as princi-

ples of continuity. The transcendence of properties that are

mathematical in nature draws one to conject that the principles

of light and impetus might apply in some manner to subatomic

behavior, too. The focus of this article is on the application of

these physical principles to bodies at a primitive scale, toward

contributing to the quantum-deterministic description.

NM, EM, and SR describe mathematically the influence

that one body has on another by the concept of force. Until

recently, the belief was that GR is the exception, that insteada)lmsilver@ncsu.edu. Tel.: (919) 329 8028.
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GR describes influence by a curvature of spacetime. How-

ever, recent discoveries have challenged that thinking. It

now seems that the concept of force applies to GR, too. For

example, in the theory of spacetime impetus (SI),8 a new rel-

ativistic universal law of gravitation predicts the trajectory

of a body when it passes by a gravitational source while trav-

eling at a relativistic speed—in full agreement with the

Schwarzschild solution in GR, but without employing the

GR apparatus of curved spacetime. It appears that GR hid

the concept of force but that it was in there. Furthermore,

with the gravitational force’s relativistic correction, the uni-

versal law of gravitation overcame the inability of SR to

account for the influence of a gravitational source. In short,

with corrections, one can now describe the influence of a

point source by a gravitational force across the deterministic

theories of NM, EM, SR, and now GR, too. Note, while

inverse square relations hold across the deterministic realms,

there are differences between them. They will differ because

of the differences in the relativistic linear momentum, which

one can reconcile by the Lorentz transformation, and they

will differ because of the aggregation that takes place when

one moves up in scale (one cannot move down in scale

because of irreversibility). Moreover, knowing that the

inverse square relations hold across the deterministic theo-

ries, there is now more reason to expect the concept of force

to apply to subatomic bodies. You will see that the quantum-

deterministic approach examined in this article reflects the

above-mentioned developments and conjectures.

Section II focuses on the principle of light within the

atom. To this end, we draw on observed behavior in free

space and hypothesize that the same behavior that applies to

free space also applies within the atom, in particular, to bod-

ies at a primitive scale. This becomes the key hypothesis of

quantum-deterministic behavior. In support of that hypothe-

sis, Section II deduces the principle of light at an aggregated

scale from this hypothesis.

Section III turns to the principle of impetus. Continuing

with our hypothesis of primitives that travel at the speed of

light, we develop an inverse square relation for these primi-

tives. We develop it by drawing on similarities between our

hypothesis and the motion of light in EM, and the before

mentioned relativistic universal law of gravitation.

After proposing a principle of light and a principle of

impetus for the primitive scale, Section IV lays out a

methodical approach for examining the stability of bodies

formed from a large number of primitives. The purpose of

focusing on a large number of primitives is computational—

in future research to help with the study of large-order struc-

tures, and seek out and study those that are stable.

In Sections V and VI, we give preliminary results from

our search for stable structures formed from primitives. The

aspiration was that we might be able to find stable structures

that exhibit quantum properties—sort of clouds of primitives

akin to the orbitals that one describes in QM quantum-

statistically. In the deterministic jargon, the hope was for the

clouds of orbiting primitives to exhibit a sort of single-mode

behavior that possess a fundamental frequency and a corre-

sponding energy level. In Section V, we present a structure

that we found that is unstable. It lacked a key ingredient that

a stable structure would require. Indeed, in Section VI, we

present a structure that possess that ingredient. The structure

was in the shape of a rotating cosine string. It exhibited the

sought after stable behavior. The article ends in Section VII

with a summary and conclusions.

II. THE PRIMITIVE ORIGIN OF THE MINKOWSKI
SPACETIME METRIC

We begin the examination with a derivation of the Min-

kowski spacetime metric9 by setting up primitives that travel

at the speed of light and then aggregating them. One pre-

sumes primitives that are directly unobservable while their

aggregates are directly observable.

A. Averaging scalars and vectors

Before aggregating primitives, we explain why from a

simple mathematical property of averaging, one can antici-

pate obtaining the Minkowski spacetime metric from primi-

tives. Consider the inequality between positive and negative

scalars ð1=nÞ
Pn

i¼1 vij j � ð1=nÞ
Pn

i¼1 vi

�� ��:10 Imagine that vi

(i¼ 1, 2, …, n) are the velocities of bodies in which

vav¢ ð1=nÞ
Pn

i¼1 vi

�� �� is their average, interpreted as the speed

of an aggregated body. You might ask what bearing this

inequality could have on the limiting speed one finds in the

principle of light. To answer this question, consider the vec-

tor extension of this inequality ð1=nÞ
Pn

i¼1 vij j � ð1=nÞ
��Pn

i¼1 vij. Imagine now that vi ði ¼ 1; 2;…; nÞ are velocity

vectors of constituent bodies whose speeds are the same,

equal to c ¼ vij jði ¼ 1; 2;…; nÞ, but whose directions are

in general different. The speed of the aggregated body

formed from them is vav¢ ð1=nÞ
Pn

i¼1 vi

�� ��. It follows from

this vector inequality that the speed of the aggregated body

must be smaller or equal to the speed c of the constituent

bodies that formed it. For example, consider constituent bod-

ies whose velocity vectors are the unit vectors(
cos hi

sin hi

� �)n

i¼1

. The unit magnitudes can correspond to the

speed of light in light units (c¼ 1), and the constituent bod-

ies travel in the directions hi ði ¼ 1; 2; …; nÞ. The average

speed is

vav ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

Xn�1

i¼1

Xn

j¼iþ1
cos hi � hj

� �
:

r

When the constituent bodies travel in the same direction

ðhi ¼ hjÞ, their speeds are equal to the average speed of one.

Otherwise, the average speed is less than one. We will here-

after refer to constituent bodies that travel at the speed of

light as primitives.

B. The hidden primitive origin of time

Time is a count of cycles, yet our subatomic measure-

ment convention for time draws from cycles that are directly

unobservable or hidden. Figure 1 shows what a cycle might

look like if it were to come from primitives.11 Denote its spa-

tial increment by dL and its corresponding time increment by

230 Physics Essays 37, 4 (2024)



dt. Again, there is no direct measurement of the spatial incre-

ment dL or of the time increment dt. Notwithstanding the

lack of observability, the length L of the cycle is
Þ

dL ¼ cT
where c is a conversion constant between the chosen unit of

length
Þ

dL and the unit of time T. Let us interpret this con-

version constant to be our speed of light. This is tantamount

to assuming that primitives travel at the speed of light, mim-

icking the behavior of light observed in free space.

Returning to the length increment, we can set it equal to

dL ¼ vdt and then express the cycle’s length asÞ
dL ¼

Þ
vdt ¼ cT, from which c ¼ ð1=TÞ

Þ
vdt is the aver-

age speed over the cycle. Reflecting the mentioned lack of

observability, we could let dL ¼ v1dt1 or dL ¼ v2dt2 without

changing dL. However, for simplicity, we can just set v equal

to c, that is, assume that the speed of the time increment is

constant through the cycle, although it is not strictly neces-

sary to do so.

C. The Minkowski spacetime metric

Continuing with our mimicking of behavior observed in

free space, let us now consider a set of n trajectories at the

primitive scale, in which each primitive travels at the speed

c. We write the length increment of any one trajectory as the

displacement vector dr ¼ dLe, where e denotes a unit vector

tangent to the spatial path. Dividing both sides by dt, the

velocity vector of the point is v ¼ ce. Now, to keep track of

primitives, we denote the displacement vector increments of

the primitives by dri ¼ dLei ði ¼ 1; 2; …; nÞ. Due to the

generality of this setup, the bodies could be primitives of an

aggregated body but they do not have to be. If they are prim-

itives of an aggregated body then the implication is that the

primitives formed a structure of some sort. If not, the primi-

tives may be following trajectories out in free space, not

belonging to a structure. The primitives can belong to a

structure or travel in free space. Right now, our interest is to

examine how one moves up in scale from primitives to an

aggregated body, so it is best to think of them as belonging

to a structure. We define the spatial path increment of a

structure to be the average of the spatial path increments of

its primitives, written as

dr¢
1

n

Xn

i¼1
dri ¼

1

n

Xn

i¼1
dLei ¼

dL

n

Xn

i¼1
ei: (1a)

Taking the magnitude of both sides, we get

drj j ¼ ðdL=nÞ
Pn

i¼1 ei

�� �� � ðdL=nÞ
Pn

i¼1 eij j ¼ dL. It follows

that the magnitude vav¢ drj j=dt of a structure’s velocity vec-

tor is less than the speeds c ¼ dL=dt of its primitives unless

all of their motions happen to align (during whichPn
i¼1 ei

�� �� ¼ n).

Next, we seek a relationship between the structure’s

behavior, which one observes at an aggregated scale, and its

unobservable or hidden internal behavior. We find it by

defining relative displacement vectors as displacement vec-

tors of primitives relative to the structure’s displacement

vector dr as

dui¢dri � dr; i ¼ 1; 2; …; nð Þ: (2)

Note that we observe the structure’s displacement vector dr

at the aggregate scale but not the displacement vectors

dri i ¼ 1; 2; …; nð Þ of primitives. Next, summing over i, the

square of the standard deviation ds of the increments of the

relative displacement vectors dui i ¼ 1; 2; …; nð Þ is

ds2¢
1

n

Xn

i¼1
dui � dui: (3a)

The standard deviation ds could characterize the structure’s

internal workings and this might very well serve as a useful

property for a structure. From Eq. (2),

dui � dui ¼ dri � drð Þ � dri � drð Þ ¼ dri � dri

þ dr � dr� 2dri � dr:

Substituting Eqs. (1a) and (2) into Eq. (3a),

ds2 ¼ 1

n

Xn

i¼1
dri � dri þ dr � dr

Xn

i¼1
1

� 	h
�2

Xn

i¼1
dri

� 	
� dr
i

¼ dL2

n

Xn

i¼1
ei � ei þ dr � dr� 2dr � dr

¼ c2dt2 � dr � dr:

Thus,

ds2 ¼ c2dt2 � dl2; dl2 ¼ dr � dr: (4)

Equation (4) is precisely the Minkowski spacetime metric at

the aggregated scale.

Remark: The derivation given above defined the posi-

tion vector r and the velocity vector v of a structure as an

average of primitive position vectors and primitive velocity

vectors, respectively, and it invoked a standard deviation ds.

However, we could have started differently, by taking

weighted averages and by invoking a weighted standard

deviation. The weighted averages of position vectors and

velocity vectors are a position vector and a velocity vector of

the system’s mass center. In terms of the weighted quantities,

instead of Eqs. (1a) and (3a), we could have started with

dr¢
1

m

Xn

i¼1
midri; m ¼

Xn

i¼1
mi; (1b)

ds2¢
1

m

Xn

i¼1
midui � dui: (3b)

Replacing standard quantities with weighted quantities does

not change the outcome of the subsequent steps. We would

FIG. 1. (Color online) The trajectory of a cycle.
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have still obtained the Minkowski spacetime metric. How-

ever, this occurred only because we had started with sub-

atomic bodies traveling at the speed c.

D. Physical interpretation of the spacetime metric

The derivation given above provides us with a plausible

physical interpretation of the spacetime metric. In spacetime

physics, we ordinarily think of the spacetime increment ds at

an observed scale, as an increment along a line,12 and do not

associate it with a composition or with constituent elements

that correspond to a smaller scale. The increment itself is an

aggregate but we disregard this fact in the mathematical

description, even though no one has ever measured anything

that is devoid of a composition. With this derivation of the

Minkowski spacetime metric, we now can interpret the mea-

surement as coming from an aggregate. In particular, we can

interpret the spacetime increment ds as the standard devia-

tion over a time increment of relative displacement vectors

of primitives composing a subatomic structure.

We see that the setup at a primitive scale led to the Min-

kowski spacetime metric, from which one deduces that the

speed of light is the same in any frame of reference. Juxta-

pose that with primitives traveling at the speed c in a spatial

framework that comes prior to the construction of a Minkow-

ski spacetime metric. The primitives by themselves would

not satisfy the spacetime metric. Therefore, if we were to

consider individual primitives in another frame of reference,

the speed of each primitive would no longer have been c.

Thus, the setup demands the existence of a single frame—

the starting assumption of a universal frame. Only then,

would the setup not suffer from contradictions. This realiza-

tion aligns closely with the Newtonian concept of the inertial

frame and with Foucault and Mach’s universal frame in

Newtonian space, and with Einstein’s support of the univer-

sal frame in spacetime.

For further clarity about the meaning of spacetime,

imagine a body composed of just two primitives, recognizing

that the number of primitives would be immense, not just

two. Recall that we do not observe them directly but assume

that this is where our measurements come from. The two

primitives are rotating about the z-axis while traveling

upward in the z direction, too (see Fig. 2). As shown, their

position vectors and velocity vectors at the instant shown are

x1 ¼ Ri; v1 ¼ Rxj þ Vk; x2 ¼ �Ri; and v2 ¼ �Rxj þ Vk.

The radius is R, the angular rate is x, and the component of

velocity in the z direction is V. Finally, as required, the speed

of each primitive is equal to the speed of light

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxð Þ2 þ V2

q
.

The observation focuses on the system as a whole, the

average location of the system and its rate of change over

time. Over a time increment dt, the two primitives undergo

the displacement vector increments dx1 ¼ v1dt ¼
Rxj þ Vkð Þdt ¼ cdte1 and dx2 ¼ v2dt ¼ �Rxj þ Vkð Þdt ¼

cdte2; where e1 ¼ Rx
c j þ V

c k and e2 ¼ � Rx
c j þ V

c k are the

unit vectors that point in their respective directions. As unit

vectors, we know that e1 � e1 ¼ e2 � e2 ¼ 1. Over the time

increment, one finds the average displacement vector of the

system as follows:

1. Define the average displacement vector of the two prim-

itives as dx¢ð1=2Þ dx1 þ dx2ð Þ.
2. Substitute dx1 and dx2 into the definition dx and get

dx ¼ 1

2
cdt e1 þ e2ð Þ ¼ 1

2
cdt

Rx
c

j þ V

c
k � Rx

c
j þ V

c
k

� �
¼ vdtk:

The magnitude of dx is vdt, where the average velocity is

v ¼ V. The velocity vector v ¼ vk acts in the k direction.

Next, we look at the standard deviation of the displacement

vectors of the primitives. Over the time increment dt, one

finds the standard deviation squared as follows:

1. Define the standard deviation squared as

ds2¢ð1=2Þf dx1 � dxj j2 þ dx2 � dxj j2g.
2. The magnitude squared of a vector is the dot product of

the vector with itself. Substitute dx1, dx2 and their aver-

age dx into ds2, and get

ds2 ¼ 1

2
cdte1 � vdtkð Þ � cdte1 � vdtkð Þ



þf cdte2 � vdtkð Þ � cdte2 � vdtkð Þg

¼ 1

2
ðc2ðdtÞ2 e1 � e1 þ e2 � e2ð Þ � vcðdtÞ2 e1 þ e2ð Þ � k

þ v2ðdtÞ2 k � kð ÞÞ ¼ c2ðdtÞ2 � 2v2ðdtÞ2 þ v2ðdtÞ2

¼ c2 � v2ð ÞðdtÞ2:

The result is ds ¼ cds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p

dt. This equation

describes the standard deviation of the system over the time

increment. In this example, we considered two primitives but

the result will be ds ¼ cds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p

dt with any number

of primitives traveling at the speed of light. Notice, as the

average speed v of the primitives gets larger that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p

gets smaller. The difference between the velocity vectors

decreases as their rotational components decrease.

We also showed this in a video simulation.b) As shown,

two primitives orbit around each other in a horizontal plane

while moving upward. The video contains ten examples with

increasing external velocities (average velocities upward).

FIG. 2. Example. b)See http://tinyurl.com/TwoPrimitives for “Two primitives in orbit.”
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For each example, the left figures show the top down view,

which reveals only the internal components of the velocity

vector, the middle figure, which is a three-dimensional view,

and the right figure, which shows a triangle. The diagonal

side of the triangle is the magnitude c of the velocity vector,

its vertical side is the external velocity v acting upward, and

the horizontal side is the internal velocity component circling

the system’s center.

With respect to the essence of our understanding of

spacetime over a time increment, the new realization sup-

ports the employment of a primitive scale, and with an

aggregated scale, where the Minkowski spacetime metric

applies. It provides us with a new rationale for why the

spacetime metric is independent of the frame of reference. It

requires that a structure composed of primitives, which we

characterized by the standard deviation ds, serve as a

universal reference. One can now imagine a stationary clock

that derives its measurements from hidden rhythms, for

which ds2 ¼ c2dt2 � dl2 ¼ c2dt2 (dl ¼ 0Þ. We then define

ds ¼ cds, where we refer to s as proper time. Thus, ds ¼ dt
becomes the stationary clock’s time measurement. For the

moving clock, the dt changes but ds remains the same. We

can imagine distributing these stationary clocks over space.

At a given instant, they have the same ds but measure differ-

ent dt.
Next, moving from an increment of a trajectory, let us

revisit how one interprets the spatial and temporal coordi-

nates of the trajectory over time of a body that travels at

speeds ranging from 0 to c. The spacetime increment ds of a

body is now changing over time. First, let dl ¼ 0. When

dl ¼ 0, the structure is stationary and ds ¼ cdt. This is the

largest value that ds can assume over a time increment dt.
Next, we increase the speed of the structure. We let dl ¼ vdt
for some v< c; the structure is now traveling at speed v. The

spacetime increment ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p

dt is smaller than the

spacetime metric ds ¼ cdt for the same dt. At the limit, when

dl ¼ cdt, the structure travels at the speed c, and ds ¼ 0. The

standard deviation now assumes its smallest value. As we

found earlier, when v¼ c, the primitives in the structure are

all aligned; the structure has degenerated to primitives travel-

ing through free space. At this extreme, the structure has

really fallen apart. Mathematically, there may be a disconti-

nuity in ds at v¼ c, in the neighborhood over which the

structure falls apart, ending when ds ¼ 0 (see Fig. 3). This

suggests that an aggregated body, which are the structures

that we observe, can travel at a speed that is very near the

speed of light but not precisely reach the speed of light—that

we should take the speed of light to be a limiting speed.

III. THE PRIMITIVE INVERSE SQUARE LAW

Section II showed that the invariance of the Minkowski

spacetime metric at the aggregated scale is rooted in an

invariant spatial metric at the primitive scale. Thus, we will

employ the spatial metric in our development of an inverse

square law for primitives.

No inverse square law presently exists at a primitive

scale so, to acquire one, it is perhaps best to draw on what

we know about inverse square laws in the deterministic theo-

ries. For one, the relativistic universal law of gravitation,

although it only applies at the aggregated scale, produces a

gravitational force that becomes perpendicular to the direc-

tion of motion of a body when its speed approaches that of

light. One also recognizes that its form simplifies both when

the speed of a body is nonrelativistic but also when the

body’s speed reaches that of light. In EM, one finds a simpli-

fication of this kind in the Biot–Savart inverse square rela-

tion for the magnetic force vectors.13 This pattern suggests,

as one moves down to the primitive scale, that the form of

the inverse square law would be simpler than observed at the

aggregated scales.

In this section, due to these and other considerations, we

examined an inverse square relation for a gravitational force

that is of a simple form—while being perpendicular to the

primitive’s motion. We let r denote a position vector that

extends from the spatial point of a first gravitational source

to the spatial point of a second gravitational source. Each of

the two source points travels at the speed c, and we denote

the velocity vector of the second source point by v. The vec-

tor component of r that is perpendicular to v is (see Fig. 4)

r? ¼ r� r � v
c

� �
v

c
: (5)

In Eq. (5), the speed of light is c, and (v=c) is a unit vector.

Therefore, r � ðv=cÞð Þðv=cÞ is the vector component of r in

the direction of v. We subtract it from r to produce the vector

r?, which is the component of r perpendicular to v.

Having defined r?, we now define the action force vec-

tor acting on the first spatial point of the first source by the

second source, located at the second spatial point, as

P ¼ G
m

r2

r?
rj j

� �
: (6)

Equation (6) is the inverse square law of the gravitational

action force vector P by the second source having mass m

FIG. 4. Vector component r? perpendicular to the direction of travel.FIG. 3. (Color online) The spacetime metric ds versus speed v.
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acting on the first source, also having mass m. The distance

between the two sources is r ¼ rj j. By definition, the action

force vector is equal to the interaction force vector F divided

by the mass on which it acts (P ¼ F=mÞ:14

Remark. Notice above when r? ¼ 0 that P ¼ 0. In the

relativistic law of gravitation, which applies to the general

relativistic motion of aggregated bodies, one also finds that

P ¼ 0 under the same condition r? ¼ 0:14

Applying Eq. (6) and the principle of impetus to a sys-

tem of N primitives ða ¼ 1; 2; …; NÞ, we arrive at the fol-

lowing equations governing the motion of the primitives:

Pab ¼ Ge
ma

r2
ab

rab?
rabj j

� �
; rab ¼ rb�ra;

rab? ¼ rab � rab �
va

c

� �
va

c
; ð7Þ

Pa ¼ aa; Pa ¼
XN

b 6¼a
Pab: (8)

Equation (7) defines the action force vectors Pab between

sources a and b and Eq. (8) defines the resultant action force

vector Pa that acts on source a, and by the principle of impe-

tus sets it equal to its acceleration vector aa.

Remark: For verification purposes, it is easy to show

that Pa is perpendicular to va, which maintains over time the

speed of body a at the light limit c. Of course, this is not coin-

cidental. We initially proposed a gravitational force that is

perpendicular to the primitive’s motion in order to ensure this.

IV. STABILITY OF PRIMITIVES

Roughly, one defines a system of attracting primitives as

stable if the primitives stay close to each other, forming a

structure. However, this definition does not distinguish

between structures in which adjacent primitives stay adja-

cent. For example, consider higher scale primitives. They

form liquid and solid structures in which the adjacency of

the higher scale primitives stays intact as opposed to their

gaseous structures in which the adjacency does not stay

intact. We shall refer to structures that maintain their adja-

cencies as locally stable. The observation of subatomic struc-

tures suggests at the primitive level that the unobserved

primitives maintain their local adjacency. Thus, in QM, we

surmise orbitals composed of primitives that exhibit behav-

ior that has similarities to rotating or oscillating swarms of

bodies that maintain local stability. Furthermore, the trajec-

tories corresponding to an orbital would configure them-

selves into a single mode that has an associated frequency

and energy level. Furthermore, one would expect the number

of primitives that are involved in forming these structures to

be immense.

Remark: In nonrelativistic motion at an aggregated

scale, vibration (including rotation) of a nondissipative deter-

ministic structure is multimodal,15 whereas the presence of

an orbital in the statistical description of subatomic bodies

suggests vibration in a single mode and frequency. One

hypothesis is that the mechanism behind reaching the single-

mode character of stability, over the multimodal character of

stability one finds in nonrelativistic motion, is due to primi-

tives traveling at the speed of light. In fact, in 2020, the third

author was performing numerical experiments on structures

governed by the same inverse square relations described in

Sec. III. Starting with a relatively small number of primi-

tives, which Whaley called “chips,” he explored their behav-

ior by simulating their responses to different initial

conditions. Through these investigations, he found initial

conditions for which the primitives form into orbital-like

structures. In the deterministic language, they looked like

stable, single-mode structures.

Section V will describe an orbital-like structure. How-

ever, before getting to that, we list just a few among a num-

ber of possible strategies that one might employ to find and

study orbital-like structures, given the challenge of them

being composed of a potentially enormous number of

primitives.

(1) Visualization: The configurations of orbital-like struc-

tures are initially unknown. A good way to find one is

to start with a candidate configuration, examine its

response, and then iterate on the configuration to

approach an orbital-like structure. Visualization serves

as a powerful tool for determining how to change a

configuration to enhance its stability. This approach led

to the rotating ring and the rotating cosine structures

described in Sec. V.

(2) Analytical measures: In addition to visualization,

which is a powerful qualitative procedure, one can

develop measures that quantify a structure’s stability

over time. The position of the structure has a mean

position and a standard deviation that change over

time. Both of these quantities can serve as analytical

measures. Other measures can serve to characterize the

orbital-like configuration and can focus on the mecha-

nism by which a configuration maintains stability.

(3) Stability analyses: One finds a candidate structure by

first prescribing some of its coordinates over time. At

this stage, the nonprescribed parameters are still

unknown. One has prescribed the coordinates in terms

of unknown parameters. For example, one might think

that a certain configuration is stable but not know how

fast it is rotating. The angular rate would be the

unknown parameter. There is no guarantee that the pre-

scribed system, because it is conjecture, will satisfy

the governing equations, Eq. (8). Putting that aside,

one could still use the error in the governing equations

as an analytical measure in order to find the

unknown angular velocity. One can find the angular

velocity that minimizes the error in the governing

equations. It would be the “best” angular velocity. In

the following, we use the error in the governing equa-

tions as the basis of a methodology that can accommo-

date candidate structures that consist of a large number

of primitives.

A. A constrained stability methodology

We now describe a methodology for determining the sta-

bility of a system of a potentially large number of primitives.
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We begin by prescribing the motion of a candidate structure.

We prescribe the motion of each primitive that composes it.

The prescribed motion does not need to satisfy the governing

equations of motion, so the simulated response does not nec-

essarily match the response of the candidate structure, nor is

the simulated response necessarily stable. However, the

response of the candidate structure is supposed to be close to

what the analyst thinks is the response of a structure that

would satisfy the governing equations of motion.

To develop the methodology, we re-examine Eq. (8). In

the candidate structure, one has prescribed its N position vec-

tors and velocity vectors. We denote its prescribed position

vectors, velocity vectors, and acceleration vectors, respec-

tively, by rp
a; vp

a; ap
a; a ¼ 1; 2; …; Nð Þ. For the stability

analysis, we set the structure’s initial states of the simulated

structure equal to the initial states of the candidate structure,

but we relax the prescription of the motion over time of a

subset of the primitives. We prescribe the motion of the

remaining primitives, regarding them as constraints. Without

loss of generality, let us relax the constraints on the motion

over time of the first n of its primitives, designating them by

rf
a; vf

a; af
a; a ¼ 1; 2; …; nð Þ and prescribe over time only the

motion of the remaining N� n primitives. The equations that

govern the motion of the nonprescribed primitives are then

pfE
a ¼ af

a; a ¼ 1; 2; …; nð Þ; (9)

in which

PfE
a ¼

Xn

b 6¼a
P

fE
ab þ

XN

b¼nþ1
P

pE
ab : (10)

In Eq. (10), P
fE
ab is the primitive gravitational force vector

between two nonprescribed primitives and P
pE
ab is between

primitive a, which is nonprescribed, and a prescribed

primitive b. Numerical integration of Eq. (9) yields

rf
a a ¼ 1; 2; …; nð Þ, which reveals an error that one can

describe in terms of a measure like

e ¼
Xn

a¼1
rf

a � rp
a

� �
� rf

a � rp
a

� �
: (11)

The error gives a measure over time of the system’s stability.

The constrained stability analysis described above can

significantly reduce computer time over an unconstrained

analysis when the number n of unconstrained primitives is

much smaller than the total number of primitives (n�N)

and when the number N of the elements is extremely large.

The integrated number of states reduces from 3N to 3n.

B. The discovery of stable structures

The discovery of stable structures was an evolutionary

process that began with examining the behavior of a small

number of primitives. We now describe the process fol-

lowed. (For simplicity, I shall here refer to the x1, x2, and x3

coordinates as X, Y, and Z coordinates, respectively.) The

evolution began by considering one primitive by itself. It

traveled in a straight line at the speed c in the Z direction.

Next, two primitives were considered. In order to stay close

to each other over time, they both needed to travel in the Z

direction or close to the Z direction, at least initially. The

two primitives stayed together when they were initially trav-

eling in the Z direction, one behind the other in the Z direc-

tion because, in this case, the force between them was zero

[see the remark below Eq. (6)]. Furthermore, without a Z off-

set, the system was unstable. When they were initially mov-

ing predominantly in the Z direction, but with an XY offset

(in an XY plane) and spiraling about the Z-axis, a self-

correction became necessary to maintain stability. At a par-

ticular initial XY offset, the two primitives did indeed spiral

around each other. A video shows the motion.c) For the given

XY offset, the geometric center of the two primitives traveled

in the Z direction; it did not have any X or Y components.

When slightly increasing or decreasing the XY offset, the cir-

cular motion in the XY plane became elliptical and differ-

ences in the Z locations of the primitives appeared, with the

lead primitive alternating. The effect became more promi-

nent by introducing an initial Z offset. With an initial Z off-

set, an oscillation of the geometric center of the primitives

was more prominent.d),e) One might describe this system as

not satisfying the conservation of linear momentum at each

instant. However, the system did seem to satisfy the conser-

vation of linear momentum over a time average of the

response.

Next, the examination expanded to a string of primitives.

The initial placement of the primitives was in the ZX plane

with the motion of the primitives predominantly moving in

the Z direction whilst rotating about the Z-axis. Depending

on the shapes of the strings, primitives at the ends flew off,

leaving a smaller number of primitives remaining stable. The

groups of primitives that flew off often formed “mini-

cosine” shapes, also rotating about the Z-axis. One obtained

a sort of alphabet soup of strings of different lengths, some

in the shape of cosine functions rotating about the Z-axis.

Therefore, in the next step of the evolutionary process, the

initial ZX shapes were just set equal to the shape of a cosine

function, rotating about the Z-axis. The resulting structure

was stable when the initial rotational rate was within an

admissible range, with no primitives flying off. The conclu-

sions from these initial studies was that a string of primitives,

spaced one after the other along the Z-axis in the shape of

the cosine function, traveling predominantly in that direc-

tion, can self-correct and maintain its local stability.f) These

preliminary results motivated many questions regarding the

nature and scope of stable configurations. Among the ques-

tions asked, we wondered whether a string of primitives

could be locally stable while maintaining a geometric center

that is stationary or traveling at a speed that is much smaller

than the speed of light, or whether a line of primitives spiral-

ing in a plane perpendicular to a predominant direction of

motion would be stable, too. In the following, we present

two structures that we studied in detail.

c)See http://tinyurl.com/FlatSpiralStructure for “The rotating structure.”
d)See http://tinyurl.com/SpiralStructure-no-zoom for “The spiraling

structure.”
e)See http://tinyurl.com/SpiralStructure-with-zoom for “The spiraling

structure.”
f)See http://tinyurl.com/CosineStructure for “The rotating cosine structure.”
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V. THE CIRCULARLY ROTATING RING

The first structure that is interesting to describe in detail

is the circularly rotating ring. It consists of N primitives con-

figured in a circle in the x1 � x2 plane (see Fig. 5). The entire

system rotates about the x3 axis with angular velocity x;
while translating in the x3 direction with velocity v. The can-

didate ring consists of N¼ 200 primitives, each a distance R
from the x3 axis. The primitives’ locations and velocities are

xa1 ¼ R cos /að Þ; xa2 ¼ R sin /að Þ; xa3 ¼ vt;

va1 ¼ �xR sin /að Þ; xa2 ¼ xR cos /að Þ; va3 ¼ v;

(12)

where the polar angles are

/a ¼
a� 1

N � 1
2p; a ¼ 1; 2; …; nð Þ: (13)

In Eq. (12), because the speed of each primitive is c, the

velocity v in the x3 direction is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � xRð Þ2

q
: (14)

The acceleration components of the coordinates are

aa1¼�x2Rcos /að Þ; aa2¼�x2Rsin /að Þ; aa3¼ 0:

(15)

One can calculate easily, because of the symmetries, the

angular velocity for which the system satisfies the governing

equations. For example, the force components in the x2

direction on primitive 1 by the other primitives cancel, leav-

ing a sum of force components in the x1 direction being set

equal to a centrifugal effect. One finds that the system’s

angular velocity is

x ¼ GmN

4R3

1

N

XN

a¼2

1

sin /a=2ð Þ

� �1=2

: (16)

Table I gives the simulation data.

Referring to Table I, we selected the values of the con-

stants to be comparable to subatomic scale quantities, but

not to correspond to any particular quantities. Notice the one

exception is the primitive’s mass of 2.567� 108 kg, which

seems inconsistently huge in comparison with the expectedly

tiny mass of a primitive. However, we will later find that this

uncharacteristically huge value is an artifact of discretiza-

tion. We will see later that the actual number of primitives

that represents that sought after behaviors would be

extremely large in comparison to the 200 primitives consid-

ered in the models. Moreover, we will find when increasing

the number of primitives that the total mass decreases to a

level that one would expect to find at a primitive scale.

Figures 6 and 7 show the short time lapses of primitives

1, 100, and 200 for a time step of dt ¼ 2:538� 10�13 at

t1 ¼ dt; t3 ¼ 3dt; t5 ¼ 5dt; and t7 ¼ 7dt. Two orbits

were considered—one for which the angular velocity was set

equal to a value that is slightly smaller than the value calcu-

lated in Eq. (16) (Fig. 6) and the other for which the angular

velocity was slightly larger than the value calculated in

Eq. (16) (Fig. 7). For each case, while the 200 primitives fol-

lowed nearly circular orbits, an instability appeared. The

primitives imploded inward for the slightly smaller value of

angular velocity (Fig. 6), and the primitives exploded out-

ward for the slightly larger value of angular velocity (Fig. 7).

Thus, as shown, the rotating ring is not stable, nor is it

even locally stable. The proximate primitives lose their prox-

imity, besides not staying a finite distance from each other.

The next example will be both stable and locally stable.

TABLE I. Simulation data for the 200 primitive, rotating ring.

Candidate rotating ring

m Primitive mass 2.567� 108 kg

R Radius 1.485� 10�8 m

x Angular velocity 9.5� 1011 rad/s

v11 Initial velocity of primitive 1

in the x1 direction

0

v12 Initial velocity of primitive 1

in the x2 direction

�14 100 m/s

v13 Initial velocity of primitive 1

in the x3 direction

299 999 999.669� 108

G Gravitational constant 6.674� 10�11 m3/kg-s2

c Speed of light 3� 108 m/s

FIG. 6. (Color online) Implosion of the rotating ring’s primitives.

FIG. 5. Idealized rotating ring.
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VI. THE CIRCULARLY ROTATING COSINE

The circularly rotating cosine structure consists of N
primitives in the shape of one wavelength of a cosine func-

tion, as shown in Fig. 8. The length L of the idealized circu-

larly rotating cosine is along the x3 direction such that its

primitives are equally spaced along the x3 direction as they

move at a constant speed v in the x3 direction. The x3 coordi-

nates of the points at time t are

xa3 ¼
a� 1

N � 1
Lþ vt a ¼ 1; 2;…; Nð Þ: (17)

The primitives lie in the x3 � r plane, where r is the radial

length in the x1 � x2 plane. Its radial coordinates are

ra ¼ R cos
2pxa3

L

� �
; a ¼ 1; 2;…; Nð Þ: (18)

The idealized structure (and the x3 � r plane) rotates about

the x3 axis at a constant angular velocity x. Thus, the x1 and

x2 coordinates of the points at time t, along with their first

and second time derivatives, are

xa1 ¼ R cos xtð Þcos 2pxa3ð Þ; xa2 ¼ R sin xtð Þcos 2pxa3ð Þ;
va1 ¼�xR sin xtð Þcos 2pxa3ð Þ;
va2 ¼ xR cos xtð Þcos 2pxa3ð Þ;
aa1 ¼�x2R cos xtð Þcos 2pxa3ð Þ;
aa2 ¼�x2R sin xtð Þcos 2pxa3ð Þ:

(19)

In the given examples, the components of the velocity vector

in the x1 � x2 plane are small compared to the speed of light

ðxR� cÞ, leaving the predominant motion of the primitives

to be in the x3 direction, given that each body is traveling at

the speed c. The speeds of the primitives in the x3 direction

are

va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � xrað Þ2

q
a ¼ 1; 2; …; Nð Þ: (20)

Notice, because the radii ra ða ¼ 1; 2; …; NÞ of the primi-

tives differ from one another, the constraint that all the prim-

itives have the same speed results in velocity components

va ða ¼ 1; 2; …; NÞ in the x3 direction that differ from one

another, too. The differences, if constant, would cause the

distances between the primitives to grow over time, prevent-

ing the idealized shape from being stable. However, we will

see that the simulated response, which satisfies the governing

equations, will reveal a self-correction that stabilizes the

structure.f)

Table II gives the simulation data. The values of the

velocity components of primitive 1 in the x1 and x3 direc-

tions give the reader an appreciation of the relative differ-

ences in their magnitudes. As in the rotating ring problem

(Table I), we selected the values of the constants to be com-

parable to subatomic scale quantities, with the exception of

the primitive’s mass, for the same reasons given earlier. At

the end of this example, we will explain the reason for the

seemingly inconsistent value of mass.

We integrated the equations of motion using the fourth-

order Runge–Kutta method over a time interval of

0 � t � 1:1735� 10�10 s. Figures 9 and 10 show the orbits

of primitives 1, 100, and 200. The orbits are essentially cir-

cular for the parameters used in the simulation. As shown,

the rotating cosine is both stable and locally stable.

We will now address the question raised earlier about

the uncharacteristically large value of mass that we selected

FIG. 8. Idealized rotating cosine structure.

FIG. 7. (Color online) Explosion of the rotating ring’s primitives.

TABLE II. Simulation data for the 200 primitive, rotating cosine.

Candidate rotating cosine

m Primitive mass 2.567� 108 kg

L Length 500� 10�9 m

R Amplitude 1.485� 10�8 m

x Angular velocity �6.735� 1010 rad/s

v11 Initial velocity of primitive 1 in x1 direction 0

v12 Initial velocity of primitive 1 in x2 direction �1000 m/s

v13 Initial velocity of primitive 1 in x3 direction 2.999 999 999 98� 108

G Gravitational constant 6.674� 10�11 m3/kg-s2

c Speed of light 3� 108 m/s
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(see Tables I and II). The question is about the convergence

characteristics of a total mass composed of an increasing

number of point masses that exert forces on each other that

are in inverse square proportion to the square of distance.

Before addressing this problem directly, note that a much

simpler problem involving point masses illustrates that one

can anticipate total mass decreasing as the number of point

masses increases. Consider the classical, nonrelativistic anal-

ysis of a ring of N equally spaced point masses rotating about

a stationary center at angular velocity x (Fig. 11).

As the number of point masses increases, it is easy to

show if the angular rate does not change that the total mass

must decrease. One calculates the force acting on point mass

N and equates it to its mass multiplied by its centrifugal

acceleration. One finds that the total nondimensional mass

comprised of N point masses is �MN¢ðGM=4R3x2Þ ¼

N
PN�1

n¼1 sin�1 /n=2ð Þ
� 	�1

: For example: �M101¼0:6473; �M103

¼0:2233; �M105 ¼ 0:1350; �M107¼0:0967; �M1011¼0:0617; and
�M1012¼0:0566: Convergence is decreasing but slow. With

this rate in which the total mass decreases, reaching the mass

of a subatomic body would require a tremendously large num-

ber of point masses.

Returning to the rotating cosine structure problem, Table

III compares simulations with different numbers of primi-

tives, showing how the mass per primitive changes with the

number of primitives. We obtained the data points in the

simulations by adjusting the mass per primitive to achieve a

circular orbit in an x1 � x2 plane that is moving relative to

the mass center in the x3 direction.

Figure 12 shows the total mass as a function of the

inverse of the number of primitives. It shows that as the

number of primitives increases (as 1/N goes to 0). The total

mass goes to zero, but at a finite value it can correspond to a

photon (more about this is the discussion section). A second

order power law trend line is shown. It has an R2 value of

0.9996.

Remark: Although not shown, after sufficiently increas-

ing the number of primitives that make up the rotating cosine

function, an inherent level of roughness revealed itself. The

function was not completely smooth. We anticipated this per

the comments below Eq. (20). Indeed, differences in radii in

Eq. (20) along the y direction cause differences in va, which

prevent the cosine shape from staying in the x3R plane.

While a self-correcting mechanism preserves stability, small

deflections perpendicular to the x3R plane are necessary in

order for the particles’ speeds to stay at c, which sets up

smaller scale out-of-plane behavior that limits the smooth-

ness of the function. Indeed, one can venture that the precise

shape of the rotating cosine is fractal in nature, not so

FIG. 9. (Color online) Orbits of primitives 1, 100, and 200 of the rotating

cosine (relative to the primitives’ geometric center).

FIG. 11. Ring of N equally spaced, gravitational sources.

FIG. 10. (Color online) Orbits of primitives 1, 100, and 200 of the rotating

cosine (relative to the primitives’ geometric center).

TABLE III. Mass per primitive versus the total number of primitives.

No. of primitives N Mass per primitive m (kg) Total mass M (kg)

100 5.904� 108 5.904� 1010

200 2.567� 108 5.134� 1010

400 1.104� 108 4.417� 1010

800 4.749� 107 3.799� 1010
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different from the scales of physical reality that naturally

divide into atoms, molecules, macro-scale bodies, celestial

bodies, solar systems, galaxies, and so on.

Next, to illustrate the constrained stability methodology

presented earlier, we reanalyzed the stability of the 200-

primitive cosine structure, but now tested its stability by

specifying the motion of a subset of its primitives. We

sought to determine whether the overall structure remained

stable with nominally circular orbits. Such a methodology,

as mentioned, becomes particularly valuable when n�N for

extremely large N.

The first case study specified the coordinates and veloci-

ties of primitives 91–110, while we determined the motion

of the remaining primitives (1–90 and 111–200) by the gov-

erning equations of motion. Figure 13 shows the orbits of

primitives 1, 100, and 200. During the simulation, the geo-

metric center of each of the three coordinates was calculated

and subtracted from the coordinates. This produced a view-

point that is relative to the structure’s centroid. This removed

any net “drift,” too. We see that primitives 1 and 200 more

or less track each other and remain centered on the adjusted

coordinate origin, while primitive 100 (within the specified

group) does drift. Having specified the motion of primitive

100 to be circular, the results were confusing. Figure 14

shows the result again, but this time without subtracting the

average. Now primitive 100 executes the expected circular

motion but primitives 1 and 200 track each other and drift.

VII. SUMMARY AND CONCLUSIONS

A historical gap in the literature motivated this study.

Scientists well know that Bohr, DeBroglie, Bohm, and others

dealt with atomic models that consisted of a small number of

primitives. At that time, they would not have been able to

model orbitals composed of a large number of primitives

because of the unavailability of the computer and, as it

turned out, there was no need for this, anyway. With remark-

able success, the quantum-statistical approach achieved what

the scientists then sought—explanations behind behaviors

observed at the larger than atomic scales resulting from

atomic scale considerations. However, what of the atomic

structures themselves? Today, what value might quantum-

deterministic descriptions offer with regard to understanding

physical behavior, and do we now have the computer power

to explore this?

The short answer is that in reductionism, that is, in the

pursuit of understanding physical behavior though descrip-

tions that transcend the different realms, the quantum-

deterministic description might very well contribute to the

state of the art. The quantum-deterministic description could

fill in gaps between the quantum realm and the other realms,

from the smallest (primitive) to the largest (cosmological).

Furthermore, we now have strong computer tools available

to assist us.

In this article, we divided the problem of the quantum-

deterministic model into a kinematic problem and a kinetic

problem. Given that a satisfactory quantum-deterministic

model does not yet exist, the treatment required that we offer

hypotheses pertaining to the corresponding kinematics and

FIG. 12. Total mass M versus 1/N.

FIG. 13. (Color online) Stability test of the orbits of primitives 1, 100, and

200 of the rotating cosine (relative to the primitives’ geometric center).

FIG. 14. (Color online) Stability test of the orbits of primitives 1, 100, and

200 of the rotating cosine (removing the subtraction of the primitives’ geo-

metric center).
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kinetics of primitives. With regard to the kinematics, our

strategy was to start with the hypothesis that the principle of

light originates from distributions of bodies traveling at the

speed of light, that they form the orbitals that we classically

describe quantum statistically. With regard to the kinetics,

our strategy was to start with the hypothesis that the principle

of impetus and gravitational attraction apply to primitive

bodies. As explained in the body of the article, we started

with these hypotheses because they apply already in the

other deterministic theories. As pointed out in the article, sci-

entists discovered recently that the theory of general relativ-

ity conforms to the principle of impetus and gravitation in

the ordinary (Minkowski) spacetime sense, which is impor-

tant because scientists viewed both general relativity’s kine-

matics and its kinetics to be an exception, which would have

been an impediment to reductionism.

In addition, as mentioned, in the quantum-deterministic

description, we interpreted the orbital as a distribution of a

large number of bodies. Would the number be necessarily

large? The answer resides in the kinematic connection

between the motion of primitives and the aggregated body

formed from them, and in the kinetics of a body aggregated

from primitives. As described, we defined the location of an

aggregated body as an average of locations of primitives.

Had the number of bodies not been very large, one likely

would have been able to detect the motion of an individual

primitive by an emitted “primitive frequency,” but that does

not appear to be the case. When sufficiently large, one would

then expect to observe a single “aggregated frequency,”

which indeed is the case. Mathematically, the Morlet wavelet

(W ¼ Ae�r2=2reixtÞ16 is the product of the Gaussian function

and the complex exponential function, in which one can

think of the Gaussian function itself as a series of an

immense number of functions.

Second, in this article, we showed that the ordinary

(Minkowski) spacetime metric emerges from the spatial

averaging of the trajectories of bodies traveling at the speed

c. This also supported the idea that the number of primitives

would be immense. It also supported that notion of a univer-

sal frame, in support of Newton’s inertial frame and Fou-

cault’s, Mach’s, and Einstein’s universal frame.

The immense number of primitive bodies emerges as a

potentially necessary requirement from the kinetics, too.

Here, we were concerned with the number of bodies that are

required to achieve a stable structure and discovered a

“gravitational chain effect,” apparently characteristic of the

stability of bodies under the influence of a primitive inverse

square law, which corresponds to the simplest form of a

gravitational law that would be consistent with general rela-

tivistic behavior. The gravitational chain is a distribution.

Therefore, it would appear to require an immense number of

primitives. The article simulated the gravitational chain

effect of an aggregated body in the shape of a rotating cosine

for a comparatively small number of primitives, but we spec-

ulate that it represents a one-dimensional distribution that, in

reality, has an almost countless number of primitives.

Depending on the subatomic structure, the distribution could

even be three-dimensional. Despite the simplicity of the

model we examined, it revealed a number of properties that

one would expect to find in bodies that make up an orbital or

some other subatomic structure.

To begin with, the revealed stability mechanism of the

rotating cosine structure was quite different from the mecha-

nism one finds in electrostatics and in celestial mechanics.

Recall that the gravitational forces, by virtue of being per-

pendicular to the directions of the trajectories of the primi-

tives, kept their speeds at c. Furthermore, the stable

configurations that we found arose when the bodies were

traveling in a tight formation that looked like a “flow” in the

Z direction. The gravitational forces had attractive compo-

nents in the Z direction and attractive components in the XY
plane. The constancy of the speeds of the individual primi-

tives in the Z direction, along with a rotation about the Z-

axis, set up a stability mechanism that involved an interplay

between offsets in the Z direction and motions (rotations) in

the XY plane. The rotating ring example and the rotating

cosine example illustrated this.

In the rotating ring example, all of the primitives were

initially located in the XY plane. This example illustrated

what happens when there is no initial offset in the Z direc-

tion. Although not shown in the article, the system was not

in equilibrium when the bodies were not rotating. Dynamic

equilibrium required a rotation of the ring primitives about

an axis perpendicular to the ring. The primitives rotated

about the Z-axis at just one specific rate of rotation. Further-

more, it was unstable. In the simulations, the system

imploded when initially rotating slower and exploded when

initially rotating more rapidly. Similar to the rotating ring

example, in the spiraling two-primitive case, the circular

shape in the XY plane elongated while a Z offset naturally

appeared as a means of self-correcting.d),e),f) The stabiliza-

tion of these structures of primitives required offsets in the Z
direction.

In the rotating cosine example, rather than place the

primitives in the XY plane at the same Z coordinate, we

placed them in the shape of a cosine function along the Z-

axis. When simulating the response, an interplay took place

between motion in the Z direction and rotation about the Z-

axis. The result was the appearance of a “gravitational chain

effect.”f)

The rotating ring structure and the rotating cosine struc-

ture illustrated that the stability mechanism is rooted in an

interplay between offsets in a direction of flow together with

a rotation about the axis of the direction of flow.

The rotating cosine example represents one simple struc-

ture that is stable, and there are likely many others. For

instance, going back to the rotating ring problem, if in addi-

tion to rotating its primitives about the Z-axis, we could have

set up the primitives so they are spiraling around the ring,

too. The spiraling would then have added a component of

motion along the Z direction. Early results (not presented)

indicate that this stabilizes the ring, too. Other possibilities

distribute the primitives over surfaces and throughout three-

dimensional space. For example, there is reason to believe

that one might obtain dynamic equilibrium and even stability

in primitives that flow on the surface of a horn torus. We

constructed an ideal horn torus structure to illustrate the flow

of the primitives on its surface. As shown in a simulation of
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an ideal horn torus,g) the primitives would travel up through

its center and down over the outside, or vice versa. One

would then need to verify its stability by imposing initial

conditions from the ideal horn torus in a simulation that

imposes the inverse square law imposed on the primitives.

The prospect of stable quantum-deterministic structures

leads to the follow-on question of the extent to which these

structures resemble quantum-statistically described

structures.

How close does the rotating cosine structure resemble a

photon? The simplicity of the rotating cosine structure’s

string-like shape allows it to flow at speeds that are close to c
but its flow cannot stop. If it were to stop, the rotating cosine

structure would lose its stability. It would break apart. Fur-

thermore, the trajectories of the rotating cosine structure that

we presented were circular in the cross section perpendicular

to the direction of flow. We obtained elliptical cross sections,

too (not presented). Are these properties analogous to the

photon? The photon, too travels at c or near c, never slows

down, and has a rest mass of zero corresponding to breaking

apart after slowing down. The frequency, wavelength, and

energy could correspond the photon’s quanta and the eccen-

tricity of the rotating cosine structure’s elliptical cross sec-

tion could correspond to polarization.

Unlike for the rotating cosine structure, the geometric

center of the rotating ring structure, if stabilized by spiraling

motion, does not have to flow. The geometric center of the

stabilized rotating ring can be stationary or move at a nonrel-

ativistic speed. Furthermore, the rotation and spiraling

together creates a left-handed and right-handed spin, and the

motion of primitives whilst its center is stationary could cor-

respond to a rest mass. How similar is the stabilized rotating

ring to the electron? Could the handedness and rest state of

the stabilized rotating ring correspond to the handedness and

rest states of the electron along with its mass?

Although conjectured, we based the exploration that we

report on here on principles that apply to the trajectories of

bodies that we took from the deterministic realms. One has

to wonder whether or how well quantum-deterministic mod-

els can shed light on quantum-statistically described behav-

ior. Could the results contained in this article provide a clue

to a transcendence across physical theories that corresponds

to realms that science classically sees as different?
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